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Abstract. Recent attacks and publications have shown the vulnerabil-
ity of hierarchical Public Key Infrastructures (PKIs) and the fatal impact
of revoked Certification Authority (CA) certificates in the PKIX validity
model. Alternative validity models, such as the extended shell and the
chain model, improve the situation but rely on independent proofs of ex-
istence, which are usually provided using time-stamps. As time-stamps
are validated using certificates, they suffer from the same problems as
the PKI they are supposed to protect. Our solution to this problem is
abandoning time-stamps and providing proof of existence using Forward
Secure Signatures (FSS). In particular, we present different possibilities
to use the chain model together with FSS, resulting in schemes that
include the necessary proofs of existence into the certificates themselves.
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1 Introduction

Public Key Infrastructures (PKIs) [22] are a well-known means of providing au-
thenticity, non-repudiation, authentication, and datedness in electronic scenarios
(e.g. e-commerce). The most prominent model of X.509 [19] PKIs consists of a
hierarchy of Certification Authorities (CA) wherein X.509 certificates and time-
stamps [1] are issued. Recent incidents involving Comodo [6], StartCom [17],
and DigiNotar [18] showed that CAs are susceptible to attacks, requiring the
revocation of CA certificates. But what happens upon revoking a CA’s certifi-
cate CertCA according to the shell model [7] used in X.509? First, as intended
CertCA can no longer be used for issuing certificates or revocations. Second, all
formerly issued certificates and revocations relying on CertCA become transi-
tively invalid. Thus, leading to an immediate and complete breakdown of the
spanned infrastructure as any authentication and signature verification relying
on CertCA will fail. This work proposes a solution to avoid this breakdown.



Contribution. We show how to provide durable protection against a PKI
breakdown while abandoning time-stamps and the corresponding additional in-
frastructure. This is done by using Forward Secure Signatures (FSS) to include
tamper proof time-tags into certificates to realize alternative validity models. Ad-
ditionally, our solution can be used for implementing revocation on doubt poli-
cies, i.e. if there is the suspicion of a compromise, simplified revocation checking
on client side, and fail-safe mechanisms.

Outline. The paper starts with an introduction to PKI and validity models.
After that, we give a detailed problem statement followed by the solution: using
the chain model with FSS. Then we describe implementation details and point
out further advantages followed by related work and a comparison to our work.
We end with a conclusion.

2 Background

In the following, we give a short introduction to PKIs and certificate validation.

2.1 Public Key Infrastructure in a Nutshell

A PKI supports the use of digital signatures [9] by handling keys and providing
public key certificates. Certificates bind the signer’s identity (e.g. a name) to
his public key. The binding is certified by a Certification Authority (CA), which
issues (i.e. signs) the certificate. CAs are often organized in a hierarchical struc-
ture. On the top exists a Root CA that issues certificates for Sub CAs. On the
next level, Sub CAs issue certificates to lower Sub CAs or end-users.

The binding between a public key and an identity is ensured until the certifi-
cate either expires or is revoked. Expiration happens upon the end of the certifi-
cate’s validity period, defined by the fields NotBefore and NotAfter. Revocation
means the invalidation of a certificate during its validity period. For instance,
when the identity changes or the private key is compromised. Revocation is done
by the CA that certified the binding, often using Certificate Revocation Lists
(CRL) [7] and / or the Online Certificate Status Protocol (OCSP) [26].

Datedness is another service supported by a PKI. Time-Stamp Authorities
(TSA) provide this service by issuing time-stamps for given data digests (e.g.
a document or a signature digest). A time-stamp is a signed object binding a
given data digest to a trustworthy value of date and time.

2.2 Validity models

There are two aspects concerning the validity of electronic signatures. The first is
the mathematical correctness of a signature, i.e. the signature is a valid signature
under the given public key. The second aspect is the semantic correctness of
a signature, i.e. the binding between the signer and the given public key is
valid. In this work we are concerned with the semantic correctness and take the
mathematical correctness for granted.



To verify the validity of a signature in a hierarchical PKI, the certification
path from the Root Certificate (a trusted anchor, usually provided using some
secure channel) to the signer’s certificate needs to be checked. This includes
the processing of revocation information and validity periods for all involved
certificates. Given the mathematical correctness of all signatures in the path, the
validity of a signature depends on the validity model used for the validation of the
certification path. The validity model specifies how the revocation information
and the validity periods are evaluated. In literature, three validity models can
be found, which we shortly explain adhering to the definitions from [3].

To formally describe the models let N be the length of the certification path.
The index k = 1 is assigned to the Root CA and k = N is assigned to the end-
entity of the chain, i.e. the creator of the document’s signature to be verified.
Cer(k), the kth certificate in the chain, certifies the key of the kth participant,
where the certificate of the Root CA in general is self-signed. According to [3] we
denote with Ti(k) the starting date of the validity period (normally the issuance
date) of Cer(k) and with Te(k) the expiry date. Ts denotes the time of signature
generation by the end-entity and Tv the time of verification of a signature. Note
that while the knowledge of Tv is trivial for the verifier, the knowledge of Ts is
not and requires a trustworthy time information, i.e. a time-stamp by a trusted
third party.

Shell Model

Definition 1 (Shell Model). A digital signature is valid at verification time Tv if:

1. All certificates in the certification path are valid at Tv: Ti(k) ≤ Tv ≤ Te(k) for all
1 ≤ k ≤ N and no certificate is revoked at Tv.

(2. The end-entity certificate Cer(N) is valid at signing time Ts: Ti(N) ≤ Ts ≤ Te(N)
and it is not revoked at Ts.)

Figure 1a shows the shell model. For a successful verification all certificates in
the chain (including the end-entity’s certificate) have to be valid at the time of
signature verification. Property 2, as found in [3], implies that all certificates
additionally were valid at the time of signature generation. Yet, the PKIX stan-
dard RFC 5280 [7] for example does not consider property 2. In that case, Ts is
completely irrelevant for the validity of a signature, which might be suitable in
an SSL/TLS scenario as Ts ≈ Tv. Currently most of the applications implement
the shell model for certificate path validation [3].

Extended Shell Model

Definition 2 (Extended Shell Model). A digital signature is valid at verification
time Tv if all certificates in the certification path are valid at Ts: Ti(k) ≤ Ts ≤ Te(k)
for all 1 ≤ k ≤ N and no certificate in the path is revoked at Ts.

In the extended shell model (also hybrid or modified shell model) Ts is used
instead of Tv during validation. That means, the certificates in the chain are
checked for validity and revocation state at generation time of the end-entity
signature. Figure 1b depicts the model. To implement this model, the signature
generation time needs to be bound to the signature such that it can be checked
that the certificates in the path were not revoked and were valid at that time.



(a) shell model (b) extended shell model (c) chain model

Fig. 1: Validity Models (with signature generation time Ts and verification time Tv , vertical
arrows show the point in time used for validation of the superordinate certificate)

Chain Model

Definition 3 (Chain Model). A digital signature is valid at verification time Tv if:

1. The end-entity certificate Cer(N) is valid at the signing time Ts: Ti(N) ≤ Ts ≤
Te(N) and Cer(N) is not revoked at Ts.

2. Every CA certificate in the chain is valid at the issuance time of the subordinate
certificate in this chain: Ti(k−1) ≤ Ti(k) ≤ Te(k−1) and the certificate Cer(k−1)
is not revoked at Ti(k) for all 2 ≤ k ≤ N .

In the chain model, any signature in the chain is validated using its signature
generation time, i.e. the issuance time of the certificate. For simplicity, the start
date of the validity period can be used as an approximation (see Figure 1c). Thus,
this date must lie within the validity period of the superordinate certificate.

Using time-stamps for realization, a time-stamp is required for every signa-
ture within the chain [3]. This is because dates prior to the signature generation
time of the end-entity signature have to be considered for the chain validation.

3 Problem statement

Considering the case of a CA key compromise and the subsequently required re-
vocation of that key, the main problem is the implicit revocation of all certificates
and signatures that rely on it. This includes all signatures created using the com-
promised key or any key certified directly or transitively using the compromised
key. Therefore, there is a total breakdown of the infrastructure spanned by the
compromised key. The implicit revocation in turn is required by the difficulty of
distinguishing between genuine and forged signatures.

This could be avoided by multiple independent issuers certifying the same
keys and thereby spanning independent, redundant PKIs. As this introduces a
considerable overhead, the work at hand assumes that there is no additional
certification path not containing the compromised keys.

While in the shell model distinguishing between genuine and forged signa-
tures is not considered at all, in the other two presented models (cf. Section
2.2) it is addressed based on the signature generation times. However, the sig-
nature generation times must be provided in a secure way. Given this is realized
somehow, we review the impact caused by the compromise of any CA within a
PKI in conjunction with the applied model for signature validation. Electronic



signatures are basically used for two purposes, signing electronic documents and
authentication. We differentiate between these two cases.

Unsuitability of the Shell model. From a security point of view, the shell
model must be used in case it is impossible to distinguish between legitimately
and maliciously generated signatures after a key compromise. Using the shell
model, all signatures depending on the compromised key are considered invalid.
Note that the expiration of a certificate has the same effect as a revocation.
Any signature and thus subordinate certificates become automatically invalid
at some point in time due to either expiration or revocation of any certificate
within the certification path. Therefore, in case any CA certificate is revoked
or expires, all subordinate certificates in the chain have to be renewed. This
might be manageable in case of scheduled expiration, as maintenance measures
like issuing new certificates can be planned and executed beforehand. However,
in case of a sudden compromise this leads to an immediate breakdown of large
parts of the infrastructure in case a major CA is concerned. In other words,
if a CA is compromised it is no longer possible to authenticate or validly sign
documents until the certificates are renewed. Even worse, all signatures issued
before the incident become invalid. Nevertheless, such a renewal is theoretically
not necessary if it is possible to securely verify whether a signature was issued
prior to the expiration or revocation of any certificate in the chain. Hence, the
shell model is unsuitable because such a verification is not considered there.

Partial unsuitability of the Extended Shell model. If the extended
shell model is used and is securely implemented using an appropriate dated
proof of existence, signatures generated before a compromise and revocation
stay valid. Yet, a compromise of a CA’s private key still has the same effect
considering authentication. This is due to the fact that the signature generation
in this case is naturally related to the current time. Additionally, signatures on
documents cannot be further validly generated either. Thus, although keeping
former signatures valid, certificate renewal is necessary to the same extend as
when using the shell model.

Suitability of the Chain model. The chain model considers a certificate
trustworthy if it is not revoked nor expired and was issued before a potential su-
perordinate CA key compromise or certificate expiration. Furthermore, it consid-
ers the validity of any certificate in the certification path at the time the respec-
tive key was used for the signature generation. As a consequence, subordinate
certificates remain valid for signature creation and verification, and therewith
also for authentication, even after the invalidation of superordinate certificates.
Thus, the properties of the chain model minimize the impact of a CA compro-
mise and completely resolve the unintended impact on dependent certificates.
Nevertheless, the model requires a secure means to assure the chronological or-
der between the events in a PKI. For instance, for the chain model to work it is
required to know when a compromise occurred and which signatures were issued
before and which ones after the compromise.



The chain model thus behaves as desired and is, for example, mandatory for
the validation of qualified electronic signatures in Germany (cf. [13]). Neverthe-
less, the difficulty of achieving secure proof of existence has to be overcome.

The proof of existence problem. Time-stamps are the current solution to
provide a proof of existence. Even though other proposals exist, these are rather
impractical and barely used in practice (see Section 6). However, time-stamping
is not an optimal and complete solution: First, time-stamping requires the setup
and maintenance of an additional and independent TSA infrastructure, and the
trustworthiness of the TSAs to apply the correct date and time. Second, time-
stamps rely on electronic signatures themselves, thus face the same problems
concerning compromise and expiration as common electronic signatures do. That
is, upon the compromise of a TSA or any superordinate CA, the issued time-
stamps become invalid and the proof of existence is lost. Therefore, time-stamps
only defer the problem to the TSA infrastructure. Third, time-stamps increase
the overhead of digital signature validation, since they are signed data objects
whose validation is also mandatory. And fourth, an online action is required to
obtain the time-stamp. This slows down the signing procedure.

4 Solution

We show how to solve the proof of existence problem by using a forward secure
signature scheme (FSS), thereby we minimize the impact of a CA key compro-
mise. First we introduce the concept of FSS. Then we show how to implement
the chain model without the need for a TSA and time-stamping using an FSS.

4.1 Forward Secure Digital Signature Schemes

The idea of forward security for digital signature schemes was introduced by
Anderson [2] and later formalized in [4]. In one sentence, the forward security
property says that even after a key compromise, all signatures created before
remain valid. Now we describe this in more detail. In currently known FSS, the
lifetime of a key pair is split into several time periods, say T . We assume T is
specified within the certificate. These time periods can be defined in different
ways. Either it is done in terms of time, i.e. one time period corresponds to one
day. Or the number of created signatures can be used, i.e. a time period ends
after the key was used to create a certain number of signatures. Yet, in general
anything that seems suitable can be applied to define the time periods. Note
that this implies that the length of two time periods might differ. Especially, it
is possible to associate the time periods with single signatures. As in the case of
a traditional digital signature scheme, an FSS key pair has one public key that
is valid for the whole lifetime of the key pair. But, in contrast to a traditional
signature scheme, an FSS key pair has many secret keys sk1, . . . , skT ; one secret
key for each of the T time periods.

The key generation algorithm of an FSS takes T as an additional input.
To sign a message, the current secret key is used and the produced signature



contains the index of the current time period. A signature is verified as valid
if the signature is a valid signature on the message under the given public key
and the index of the time period included in the signature. The private key is
updated for the following time period using an additional key update algorithm.
This algorithm is either called manually by the user, scheduled to run at the end
of the time period, or is part of the signature algorithm, depending on the way
the time periods are defined.

A FSS provides the same security guarantees as a traditional signature scheme.
Even if an adversary can trick the user into signing messages of her choice, this
adversary is unable to forge signatures on subsequent messages. But the forward
security property also gives a stronger security guarantee: Even if the adversary
learns the current secret key ski of time period i, then the adversary is unable
to forge a signature for any time period j < i. For a formal definition of FSS we
refer the reader to [4].

4.2 FSS and Revocation

The forward security property allows us to handle revocation in a fine grained
manner. Revocation is a means to limit abuse of a certificate. A certificate is
revoked in case of a key compromise or for organizational reasons. In the following
we only look at the case of key compromise, the other cases follow accordingly.
In case of a key compromise, the forward security property guarantees that
all signatures created prior to the compromise originate from the certificate
owner. So there is no need to render these signatures invalid. As all signatures
contain the index of the time period they were created, we can do a fine grained
revocation. We do not revoke the validity of the certificate in general, but we
revoke only the validity for all time periods starting from the time period when
the key was compromised. So if we know the index c of the time period of key
compromise, the revocation starts at index c. A signature including index i is
accepted as valid if i < c and invalid if i ≥ c.

4.3 Chain model with FSS

Now we show how to realize the chain model, taking advantage of the fine grained
revocation introduced above. First, we show how the traditional chain model can
be securely realized without a TSA. This realization takes validity periods for
certificates into account, which requires the binding of signature generation time
and real time in form of a calendar date. Then, we argue from a security point
of view, that there is no reason for explicit validity periods when using FSS.
We discuss the possibility to abandon explicit validity periods based on calendar
dates and show how to handle implicit validity periods given by the indices. Thus,
realizing the chain model only working on indices. This is especially relevant for
FSS where the time periods for key update are not defined using calendar dates,
but the number of generated signatures. While both approaches consider the
exclusive usage of FSS, we show in the third scenario that the chain model can



be securely implemented without a TSA in the context of authentication, even
in case the end-entity does not use FSS.

Realization with validity periods. Currently, the definition of the chain
model is tailored to the binding of signature generation time and real time in
form of a calendar date. Binding a time in form of a calendar date to the signa-
tures can easily be realized for FSS by simply including the signature generation
time into the signature and signing it together with the signed data. By the
forward security, such a time-tag cannot be forged by an adversary that later
compromises the key. The point is, that an adversary can only use later key
states to sign, thus even back dated time-tags become invalidated by a revo-
cation. Therefore, such time-tags are secure. The trustworthiness of CAs is a
preliminary for the concept of hierarchical PKIs thus time tags included by CAs
are trustworthy by assumption. End-entities might have appeals to forge such
time-tags. Nevertheless, this is another problem not considered it in this work.

To implement the chain model with FSS, we propose with Definition 4 a
slightly adapted version of Definition 3 as seen in Section 2.2. The variables are
defined as above. Signature generation times can be extracted from self-signed
time-tags. We furthermore assume an FSS, where the time period is represented
by a running index and that the end-entity uses FSS, too. Additionally, let Is be
the index used for end-entity signature generation, Is(k) the signing index used
to sign certificate k and Ir(k) a possible revocation index. Additionally, Ie(k)
denotes the maximal index specified in certificate k. Thus, Ir(k) = Ie(k) + 1 in
case there is no revocation for certificate k. Note that due to this definition Is(k)
and Ir(k − 1) are indices belonging to the same key pair.

Definition 4 (Chain Model with FSS v1). A digital signature is valid at verifica-
tion time Tv if:

1. The end-entity certificate Cer(N) is valid at the signing time Ts: Ti(N) ≤ Ts ≤
Te(N) and Is is not revoked for Cer(N) : Is < Ir(N).

2. Every CA certificate in the chain is valid at the issuance time of the subordinate
certificate in this chain: Ti(k− 1) ≤ Ti(k) ≤ Te(k− 1) and Is(k) is not revoked for
certificate Cer(k − 1) : Is(k) < Ir(k − 1) for all 2 ≤ k ≤ N .

As CAs in general sign certificates, the time-tag can be included into the cer-
tificate itself. To have an exact date, this could be an additional field called
IssuanceDate, which is then signed as a part of the certificate. This would en-
able the issuance of certificates that become valid at a later point in time i.e.
IssuanceDate < NotBefore. An approximate solution, which does not require
a new field, would be to use the NotBefore date already included in X.509 cer-
tificates. This is less precise but an acceptable approximation for the issuance
date in most cases. In this case it has to be considered that the validity of is-
sued certificates must start within the validity period of the issuer’s certificate
in order to be positively validated.

Realization without validity periods. Here we consider a chain model
only based on the chronological ordering of signatures and without explicit cal-
endar dates. Getting completely rid of calendar dates makes the implementation



more efficient as their verification is omitted. Furthermore, abandoning calendar
dates implies that time synchronization is non-essential for the security.

The chain model without explicit calendar dates is given in Definition 5.
Revocation is based on the index and does not depend on the exact calendar
date when a signature was generated. Implicit validity periods are ensured by
validating the signature index. The variables are as defined in Section 4.3.

Definition 5 (Chain Model with FSS v2). A digital signature is valid at verifica-
tion time Tv if:

1. The end-entity certificate Cer(N) is valid for signing index Is: 1 ≤ Is ≤ Ie(N)
and Is is not revoked for Cer(N) : Is < Ir(N).

2. Every CA certificate in the chain is valid for the signing index used for the subor-
dinate certificate in this chain: 1 ≤ Is(k) ≤ Ie(k − 1) and Is(k) is not revoked for
Cer(k − 1) : Is(k) < Ir(k − 1) for all 2 ≤ k ≤ N .

The rationale behind explicit validity periods based on calendar dates is
twofold. On the one hand, the business model of CAs is based on the recurring
issuance of certificates. On the other hand it has security reasons, as validity
periods enforce a key renewal after a certain time helping to address a possible
fading out of algorithms.

In case of FSS, it is reasonable to abandon explicit validity periods, as such
schemes in general only allow for a certain number of signatures or a validity
period is implicitly given by the construction of the scheme. Thus, for example,
an FSS certificate becomes valid at the time of issuance and the validity period
ends when a given number of indices specified within the certificate is used up.

Nevertheless, in order to ensure that a certificate is only used for a fixed time
period, e.g. 2 years, there are several possibilities. The first would be to split the
number of allowed indices evenly over the desired validity period and publicly
announce which indices have to be used on which day3. The certificate owner
must then increase the index, e.g. on a daily basis, to adhere to the schedule. Yet,
this approach has several disadvantages. The certificate owner can only generate
a limited number of signatures in any sub period. On the other hand, if not using
up all indices, he must manually update the index and the key.

The second possibility would be to revoke a certificate at the end of the de-
sired validity period with the current index, thus not affecting signatures gener-
ated before. This has the advantage that no fix schedule and no manual increase
of the index are needed. The only requirement is the proper revocation, which
requires the key owner to correctly report the current index to the CA.

The third possibility to achieve an approximate validity period would be
to individually estimate the number of signatures to be generated within the
validity period and set the final index according to that estimation. This might
lead to a somewhat shorter or larger validity period as desired depending on the
difference between the estimated and the actual number of generated signatures.

Realization with stateless (non FSS) end-entity signatures. In the
case of authentication or similar use cases, where the signature time Ts is approx-
imately the verification time Tv, one does not gain any benefit from using FSS

3 This would also solve the problem of users putting fake time-tags to some degree.



for the end-entity certificate. As FSS are slightly less efficient then traditional
signature schemes and as they are stateful, this might even be a drawback in
some scenarios. Therefore we show that even if the end-entity uses a conventional
(stateless) signature scheme, the chain model can securely be realized without a
TSA in case the signature time Ts is approximately the verification time Tv. For
instance, in the SSL/TLS Internet setting. Nevertheless, a TSA is indispensable
if any CA does not use FSS. Definition 6 shows the special case where Tv replaces
Ts in step one. Note that the revocation of end-entity certificates must be done
in the conventional way.

Definition 6 (Chain Model with FSS v3). Given all signature schemes involved
in the certification path are FSSs except the end-entity scheme and Ts ≈ Tv, then a
digital signature is valid at verification time Tv if:

1. The end-entity certificate Cer(N) is valid at the verification time Tv: Ti(N) ≤
Tv ≤ Te(N) and Cer(N) is not revoked at Tv.

2. According to Definition 4 if using explicit calendar based time period, or Definition
5 otherwise.

Even in case the end-entity uses a common stateless signature scheme for doc-
ument signatures, where Ts ≈ Tv does not hold in general, FSS for CAs eases
the use of the chain model. A TSA would then only be needed to time-stamp
the end-entity signature. This time-stamp has to be validated during signature
verification. No further time-stamps concerning the certificates are necessary,
thus the chain model can be implemented as described in Definition 6 replacing
in step 1 Tv by Ts as is contained in the time-stamp.

5 Implementation

In this section we discuss how to implement our proposal. First we show how
to change the path validation specified in RFC 5280 [7]. Then we discuss some
revocation related issues, including how to determine the time period of a key
compromise. We show how to improve the revocation handling on the client side
and we discuss which FSS fits to our proposal.

5.1 Implementation of the chain model

We suggest the usage of FSS for CAs to implement the chain model for path val-
idation in a practicable way (see Section 4.3). The implementation only requires
small changes in the path validation specified in RFC 5280 [7]. The changes
are shown in Algorithm 1. The new parameter working validity period and the
italic parts are only needed if explicit validity periods based on calendar dates
in FSS certificates are considered. Otherwise the signature generation time is
considered to be implicitly given by the used signature index. If the used index
is smaller than a potential revocation index, then the certificate has been validly
generated. In case of the end-entity certificate (i.e. step c), we assume a standard
signature scheme. In that step shell and chain model are equivalent given the
current time is approximately the signing time.



Algorithm 1 Basic Certificate Processing Chain model with FSS
Initialize working public key algorithm, working public key, working public key parameters, and
working issuer name (and working validity period) with the values from the trust anchor infor-
mation.
For each certificate in the certificate chain do:

1. Basic Verification
(a) Check if signature index contained in the certificate signature is revoked for work-

ing public key (and if issuance date of certificate is within working validity period).
(b) Verify certificate signature using signature index, working public key algorithm, the work-

ing public key, and the working public key parameters.
(c) if current is end-entity certificate: Check if the certificate validity period includes the

current time and is not revoked at the current time.
(d) Check if the certificate issuer name is the working issuer name.

2. as described in [7]

Prepare for next certificate in the chain.
Wrap-Up Procedure

The variable signature index is contained in the signatures generated with
an FSS and can be extracted from the processed certificates. Using that index
for revocation as described in Algorithm 1, one major difference to RFC 5280 [7]
is that the revocation information checking for the root certificate is enforced.
We consider this to be an essential security aspect in case of potential CA com-
promises. Currently, all browsers come with a built in list [32] of trusted root
certificates. The self-signed root certificates are allowed to be excluded from path
validation (see e.g. TLS 1.0 RFC 2246 [8]) and only be used for initialization.
Thus, no revocation information is checked for these trusted Root CA certifi-
cates and any revocation in case of a compromise remains without effect. On the
one hand, this is a design issue as in the traditional setting CAs use the same
key for certificate and CRL signing which is insecure [25] if Root CAs revoke
their own key. Yet, there are two other settings backed by the X.509 standard,
namely that different keys are used or revocation is performed by another entity.
In these settings revocation of Root CA keys is possible.

Furthermore, the client applications (e.g. web browsers) have to support the
used FSS schemes. To obtain a broad applicability, the verification algorithms
of the FSS of choice as well as the path validation according to the chain model
have to be implemented within major libraries and crypto providers, as e.g.
OpenSSL [27].

5.2 Compromise Detection and Revocation

In Section 4.2 we discuss how to realize fine grained revocation using an FSS. This
requires finding out the key index during the key compromise. Commonly, this is
done as follows. First of all, the certificate holder has to determine the date of key
compromise. How this can be realized depends on the kind of key compromise,
but is not addressed in this work. One possible approach is described in [33].
Knowing the compromise date, it needs to be linked to an FSS time period and
the corresponding index. Now, there are several ways to define the FSS time
periods (see Section 4.1). If the FSS time periods are defined in terms of real



time, this directly gives us the index of the FSS time period at key compromise
and we are done. Nevertheless, it is also possible that the FSS time periods are
defined in another way, such as one signature per time period. In this case, it is
not easily possible to link a date to an index. Therefore, the certificate owner has
to keep track of his key updates. In case of a CA, this can be done logging the
last used index with the current date to a write once memory during key update.
Then, given the date of the key compromise, it is possible to determine the last
index used before the compromise even if the adversary manages to suppress the
logging. Alternatively, it would be possible to publish the last used index at the
end of each day in a newspaper.

5.3 Further advantages and choice of FSS

An additional advantage of FSS is that their statefulness allows to improve the
client-side revocation handling by locally maintaining the states of the known
CA certificates by storing the highest index currently known to be valid. In
contrary to current practice [29], this allows the enforcement of so-called hard
fails at least for CA certificates while minimizing the impact of unavailability
issues. Furthermore, due to the precise impact of revocation in our approach, a
certificate can be revoked on suspicion of a compromise.

Although our proposal works with arbitrary FSS, we propose to apply the
eXtended Merkle Signature Scheme (XMSS) [5] as it is most suitable for the given
scenario. XMSS is hash-based and thus a post quantum signature scheme. It is as
fast as RSA and ECDSA although it is forward secure and it provides comparable
key sizes. For XMSS, a time period is hard linked to one single signature and
the key is automatically updated by the signature algorithm. In case of a CA,
this allows the most fine grained revocation handling that is possible.

Furthermore, with XMSS the probability of a sudden breakdown caused by
advances in cryptanalysis can be efficiently minimized [5]. On the one hand,
it requires minimal security properties to be secure, thus the break of harder
properties can be seen as an early-warning system. On the other hand, so-called
hash combiners (i.e. see [11]) can be used, such that the resulting combination
is secure as long as at least one of the hash function families is secure. For more
details on the several advantages see the extended version.

6 Related Work & Comparison

Key compromise and revocation can cause a huge impact on PKI systems, which
is a well known problem. Researchers (e.g. [16]) have criticized how revocation
is implemented in X.509. In this context, several proposals came up to either
avoid revocation or mitigate its impact as shown in the following.

The complete elimination of revocation in PKIs by the use of short lived
certificates is proposed by Rivest [28] and applied by e.g. Gassko et al.[12]. Yet,
this approach comes with a considerable overhead of repeated certificate issuance
and, in case of CA certificates, rebuilding the whole certificate hierarchy.



Other authors propose to distribute trust among multiple instances. While
Maniatis et al. [14] propose a Byzantine-fault-tolerant network of TSAs to pro-
vide protection against TSA compromise, Tzvetkov [31] proposes a disaster cov-
erable PKI model based on the majority trust principle. The first uses additional
proofs of existence based on threshold signatures but requires a complex infras-
tructure and generates a huge overhead during verification of the signatures and
time-stamps. In the latter, to tolerate the compromise of a minority of CAs, each
certificate has to be signed in parallel by different CAs.

The use of write-once and widely witnessed media (e.g. official gazettes or
newspapers) is an alternative to anchor digital objects in the time-line. Combined
with the application of hash chains, as done by the TSA Surety [30], this can
be implemented more efficient, but the usability and the preservation (e.g. of
printed journals) in long-term raise concerns.

Baier and Karatsiolis [3] identify and define the three different validity mod-
els. They also propose an implementation of the extended shell and the chain
model based on time-stamps using the ETSI specification CAdES (CMS Ad-
vanced Electronic Signatures [10]) to provide the required proofs of existence.
Yet, this leads to quite complex realizations due to the additional management
of the time-stamps and their verification during path validation.

Although the use of FSS in the area of PKI is not novel, no previous work has
yet provided a complete forward secure PKI model to the best of our knowledge.
Besides our work, Kim et al. [20] propose to use FSS for CAs to ensure business
continuity in case of a CA key compromise. Thus, they use FSS in the same
way as in our approach. Yet, their work lacks a model for path validation in
hierarchical PKIs, which is highly interwoven with the properties of FSS and
must be adequately chosen to exploit the specific advantages. We show that in
order to achieve business continuity, i.e. validly generated certificates stay valid
even in case of a CA key compromise, the chain model must be used and that the
common shell model is not suitable. Besides that, Kim et al. [20] consider FSS
with fixed key update periods. Our approach is more general. To the best of our
knowledge we are the first showing how revocation must be handled to obtain fine
grained revocation. Additionally, we show how to omit explicit validity periods,
simplifying path validation without a security decrease.

Several other works apply FSS within PKI [15,21,33,23,24], but there are
significant differences in the goals and the use of FSS compared to our work. Go
[15] considers FSS for CAs, yet within the threshold setting in mobile AD Hoc
networks – which significantly differs from our PKI setting – concluding that no
existing scheme fulfills the specific requirements.

Koga et al. [21] propose a PKI model where the certificate chain for validation
always has length one. They propose different constructions where either FSS or
key-insulated signatures schemes (KIS) are used by the Root CA to generate the
secret keys for the Sub CAs. While this allows the keys of Sub CAs to stay valid
in case of a Root CA compromise, in case of the construction based on FSS, the
compromise of a Sub CA implies the compromise of Sub CAs that obtained keys
with higher indices. Multiple Root CA key pairs or KIS solve this problem but at



the cost of additional overhead. The KIS approach is further developed by Le et
al. [23]. Nevertheless, in both works [21,23] CAs always use their unique key to
sign common user certificates. Thus, all user certificates issued by a certain CA
are invalidated in case of this CA being compromised. Furthermore, the CA keys
need to be securely transferred from the Root to the Sub CAs. The approach of
Le et al. even needs the transport of tamper resistant sub devices to the CAs.

In another paper Le et al. [24] propose to use FSS in revert order to allow to
easily invalidate signed credentials. That is, a credential is signed with many keys
obtained from an FSS key pair. Credentials can be invalidated by successively
publishing the keys in reverse order. While this could be used to obtain short
lived certificates, the applicability to establish a PKI is limited. As a key pair
can obviously only be used to sign a single document this would imply the
management of a huge amount of signing keys that are exposed to a possible
compromise as the reverse order does not allow the deletion of former FSS keys.

While our focus lies on the PKI and its mechanisms for revocation and vali-
dation itself, Xu and Young [33] consider compromise detection to finally obtain
a robust system. To keep track of the key usage, signatures are deposited at
highly secured systems and published on bulletin boards, where FSS are used to
provide a stateful authentication. That means tampering can be observed based
on inconsistencies in the authentication key states.

7 Conclusion

We saw that in the shell model a CA revocation results in a complete transitive
invalidity of all dependent certificates and signatures, leading to a total break
down of the respective PKI. We argued how the alternative validity models, i.e.
extended shell model and chain model, improve the situation and demonstrated
their dependency on dated proofs of existence. We showed that time-stamping,
the current way to provide these proofs, inflates the infrastructure and increases
the overhead for signature generation and validation while facing the same prob-
lems it is supposed to solve. We proposed different ways to utilize FSS to create
certificate inherent dated proofs of existence, thereby getting rid of time-stamps
and their infrastructure. We saw that the use of FSS is an attractive solution
regarding revocation and to mitigate its impact compared to alternative mecha-
nisms. First, because it does not add extra costs for the maintenance of a PKI,
e.g. caused by key and certificate renewal after short periods to prevent revo-
cation. Second, from the end-user’s point of view, the probability that his cer-
tificate becomes invalid because of a CA key compromise is minimized without
any costs. The usability and the computational effort to use the PKI services is
equal to conventional signature schemes. Finally, our solution adds no new con-
straints. By giving advice on implementation issues, we showed how our solution
also supports more aggressive revocation policies, simplifies client side revoca-
tion checking, and enables sudden breakdown protection. All in all, we showed
how to substantially mitigate the probability and the impact of CA certificate
revocation and at the same time get rid of time-stamping infrastructures.
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