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Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!
Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme
It is slow. . . but not as slow as you might think
Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical
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Page 11 from http://crypto.2014.rump.cr.yp.to/bca480a4e7fcdaf5bfa9dec75ff890c8.pdf:

Challenge announced at CRYPTO 2014 rump session:
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http://crypto.2014.rump.cr.yp.to/bca480a4e7fcdaf5bfa9dec75ff890c8.pdf


Code is available: https://github.com/amaloz/ind-obfuscation

ePrint version should be up at some point
For the cryptanalysts in the audience: We have an obfuscated 14-bit
point function on Dropbox1 — learn the point and you win!

Contact info: {dapon,yhuang,jkatz,amaloz}@cs.umd.edu

Thank you

1https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip
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Challenge announced at CRYPTO 2014 rump session:
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Breaking the challenge:
I 14-bit point function,
I “60 bits of security”,
I obfuscation size: 25 GB.

Attack component Real time

Initial procrastination a few days
First attempt to download challenge (failed) 82 minutes
Subsequent procrastination 40 days + 40 nights
Fourth attempt to download challenge (succeeded) about an hour
Original program evaluating one input 245 minutes
Original program evaluating all inputs on one PC (extrapolated) 7.6 years
Copying challenge to cluster about an hour
Our faster program evaluating one input 4.85 minutes
First successful break of challenge on 20 PCs 23 hours
Further procrastination (“this is fast enough”) about half a week
Our faster program evaluating all inputs on 22 PCs 34 minutes
Second successful break of challenge on 21 PCs 19 minutes
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What happened?
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Restart from the beginning

I (Eurocrypt 2013) Garg, Gentry, and Halevi, Candidate
multilinear maps from ideal lattices. (GGH)

I (Crypto 2013) Coron, Lepoint, and Tibouchi, Practical
multilinear maps over the integers. (CLT)

I (Eurocrypt 2014) Langlois, Stehlé, Steinfeld, GGHLite: More
Efficient Multilinear Maps from Ideal Lattices. (GGHLite)

I (FOCS 2013) Garg, Gentry, Halevi, Raykova, Sahai, and
Waters, Candidate indistinguishability obfuscation and
functional encryption for all circuits.

I Several improvements
I (CCS 2014) Ananth, Gupta, Ishai, and Sahai, Optimizing

obfuscation: avoiding Barrington’s theorem.

I Bunch of applications of iO
I Previously impossible constructions.
I Reconstructing old things more inefficiently

BUT WITH iO!
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The University of Maryland Implementation

I (eprint 2014) Apon, Huang, Katz, and Malozemoff,
Implementing cryptographic program obfuscation.

I First implementation of candidate obfuscation

I Implement AGIS (CCS 2014) scheme with CLT

I Biggest circuit: 16 bit point function (16 OR gates)

I Reason? Bad performance!
I Obfuscation time ≈ 7 hours
I Evaluation time ≈ 3 hours
I Obfuscation size: 31 GB
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Point-function obfuscation - Obfuscation

Obfuscation for n-bit point, security parameter λ:

I modulus q ∈ N (having Θ((λn)2 log2 λ) bits).

I 2n matrices Bb,k ∈ Z(n+2)×(n+2)
q for 1 ≤ b ≤ n and k ∈ {0, 1},

I s, t ∈ Z(n+2)
q ,

I zero test value pzt ∈ Zq (Multi-linear map artifact).
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Point-function obfuscation - Evaluation

Evaluation for x = (x [1], x [2], . . . , x [n]) ∈ {0, 1}n
I Compute A = B1,x[1]B2,x[2] · · ·Bn,x[n].

I Compute y(x) = s>At.

I Compute y(x)pzt and reduce mod q to the range
[−(q − 1)/2, (q − 1)/2].

I Multiply the remainder by 22λ+11, divide by q, and round to
the nearest integer.

I Output 0 if result is 0; output 1 otherwise.
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Performance & Security

Performance:

I Experimentally (n = 14): ≈ 249 cycles / evaluation
I Theoretically:

I (n − 1)(n + 2)3 multiplications of integers > (q − 1)n (on
average) to compute A.

I Total complexity n7+o(1) (assuming schoolbook multiplication).

Security:

I Parameters chosen for 60 bit security of multi-linear map.

I “Exhaustive search too slow” (> 260 cycles for n = 14).
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Our attack
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Our attack

1. Speed up evaluation

1.1 Intermediate reductions mod q
1.2 Only matrix-vector products

2. Speed up exhaustive search

2.1 Reuse intermediate results
2.2 Meet-in-the-middle
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Intermediate reductions mod q

I Integers grow up to (n + 2)n−1(q − 1)n; typically larger than
(q − 1)n.

I Multiplication essentially linear in #bits (b1+o(1)).

I y(x)pzt is in Zq.

Improvement:

I Reduce mod q after every vector-vector product.

I Inputs to mult < q − 1.

I Reduce costs by factor n:

n7+o(1) ⇒ n6+o(1)
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Only matrix-vector products

Step 1 of eval: Compute A = B1,x[1]B2,x[2] · · ·Bn,x[n].

Step 2 of eval: Compute y(x) = s>At.

I Matrix-matrix products are unnecessary!

I y(x) =
(
· · ·

(
(s>B1,x[1])B2,x[2]

)
· · ·Bn,x[n]

)
t

I (n − 1)(n + 2)3 multiplications ⇒ (n − 1)(n + 2)2

(omitting vector-vector)

n6+o(1) ⇒ n5+o(1)
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From single evaluation to exhaustive search

So far we reduced time for one evaluation

n7+o(1) ⇒ n5+o(1),

dominated by (n + 1)2 dot products mod q.
This means, exhaustive search takes

(n + 1)22n

dot products mod q.
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Reuse intermediate results

I y(0) =
(
· · ·

(
(s>B1,0)B2,0

)
· · ·Bn−1,0

)
· · ·Bn,0t

I y(1) =
(
· · ·

(
(s>B1,0)B2,0

)
· · ·Bn−1,0

)
· · ·Bn,1t

I Generally, trying all inputs in order, average cost to update
result: 2 vector-matrix products.

Improvement:

(n + 1)22n ⇒ 2(n + 1)2n dot products mod q
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Meet-in-the-middle
I Split computation into two halves

y(x) = (s>B1,x[1] · · ·B`,x[`])(B`+1,x[`+1] · · ·Bn,x[n]t).

I precompute a table of “left” products

L[x [1], . . . , x [`]] = sB1,x[1] · · ·B`,x[`]
for all 2` choices of (x [1], . . . , x [`])

I for each choice of (x [`+ 1], . . . , x [n]), compute “right”
product

R[x [`+ 1], . . . , x [n]] = B`+1,x[`+1] · · ·Bn,x[n]t,

and multiply each element of the L table by this vector.

Improvement for ` = n/2 (assuming n is even):

2(n + 1)2n ⇒ 4(n + 2)(2n/2 − 1) + 2n dot products mod q
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Summing up

We reduced time for exhaustive search from

n7+o(1)2n ⇒ n3+o(1)2n.

On one PC this takes 444.2 minutes. (Original program, estimated
= 7.6 years)
On 22 PCs: 29.5 minutes.
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Conclusion

I First two improvements speed up obfuscation scheme (though
trivial).

I Reuse and meet-in-the-middle vulnerabilities inherent to
obfuscation using matrix-branching (always at least factor n2

speed-up).

I See paper for generalizations and further asymptotic speedups

Simply use a hash function for password-hashing!
Thank you.
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