Quantum Computing vs. Your Privacy

Andreas Hülsing

Privacy?

Michel Foucault, Discipline and Punish, 1977

Too abstract?

Too abstract?

How to achieve privacy?

Under the hood...

Asymmetric Crypto

- ECC
- RSA
- DSA

Symmetric Crypto

- AES
- SHA2
- SHA1
- ...

Combination of both needed!

We need symmetric and asymmetric crypto to achieve privacy!

Quantum Computing

Quantum Computing

"Quantum computing studies theoretical computation systems (quantum computers) that make direct use of quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data."

-- Wikipedia

Qubits

- Qubit state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$ with $\alpha_i \in \mathbb{C}$ such that $\alpha_0^2 + \alpha_1^2 = 1$
- Ket: $|0\rangle = {1 \choose 0}$, $|1\rangle = {0 \choose 1}$
- Qubit can be in state $\frac{|0\rangle+|1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} {1 \choose 1}$
- Computing with 0 and 1 at the same time!

Quantum computers are not almighty

- To learn outcome one has to measure.
 - Collapses state
 - 1 qubit leads 1 classical bit of information
 - Randomized process
- Only invertible computation.
- Impossible to clone (copy) quantum state.

The Quantum Threat

Shor's algorithm (1994)

- Quantum computers can do FFT very efficiently
- Can be used to find period of a function
- This can be exploited to factor efficiently (RSA)
- Shor also shows how to solve discrete log efficiently (DSA, DH, ECDSA, ECDH)

Grover's algorithm (1996)

- Quantum computers can search N entry DB in $\Theta(\sqrt{N})$
- Application to symmetric crypto
- Nice: Grover is provably optimal (For random function)
- Double security parameter.

To sum up

- All asymmetric crypto is broken by QC
 - No more digital signatures
 - No more public key encryption
 - No more key exchange

- Symmetric crypto survives (with doubled key size / output length)
 - NOT ENOUGH!

Why care today?

Quantum Computing

"Quantum computing studies theoretical computation systems (quantum computers) that make direct use of quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data."

-- Wikipedia

Bad news

I will not tell you when a quantum computer will be built!

Europe plans giant billion-euro quantum technologies project

Third European Union flagship will be similar in size and ambition to graphene and human brain initiatives.

Elizabeth Gibney

It's a question of risk assessment

How soon do we need to worry?

Depends on:

- How long do you need your keys to be secure?
 (x years)
- How much time will it take to re-tool the existing infrastructure with large-scale quantum-safe solution? (y years)
- How long will it take for a large-scale quantum computer to be built (or for any other relevant advance? (z years)

Theorem 1: If x + y > z, then worry.

What do we do here??

Who would store all encrypted data traffic? That must be expensive!

Defending Our Nation.

Securing The Citizens.

PQCRYPTO to the rescue

Initial recommendations

- Symmetric encryption Thoroughly analyzed, 256-bit keys:
 - ► AES-256
 - Salsa20 with a 256-bit key

- Symmetric authentication Information
 - of authenticator
- Public-key encryptia mece with binary Goppa codes:
 - mension k=5413, t=119 errors

- and too high...

 and sellow too helic.

 and sellow too helic.

 yptic solutions are slow it and.

 neconsidence inspiring men.

 Pul nfidence inspiring men. signatures Hash-based (minimal assumptions): MSS with any of the parameters specified in CFRG draft
 - SPHINCS-256

Evaluating: HFEv-, ...

TODOs

 Increase confidence for other schemes: (Quantum) cryptanalysis

Improve existing schemes

Create code-base

Basis for standards, certification, ..., deployment

If you do not want to look like this... Work on PQCrypto

Thank you! Questions?

25-5-2016 PAGE 29