Semantic Security and Indistinguishability in the Quantum World

Tommaso Gagliardoni¹, <u>Andreas Hülsing</u>², Christian Schaffner³

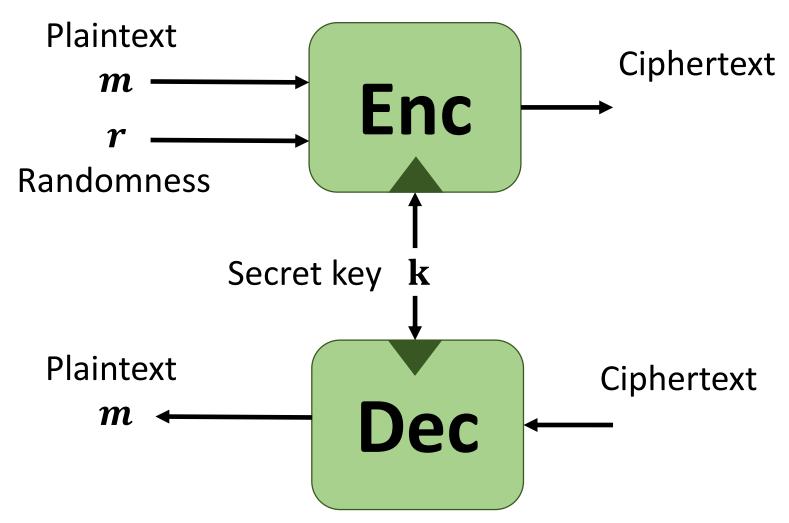
¹ IBM Research, Swiss; TU Darmstadt, Germany ² TU Eindhoven, The Netherlands ³University of Amsterdam, CWI, QuSoft, The Netherlands

Crypto Working Group, Utrecht, NL 24/03/2017

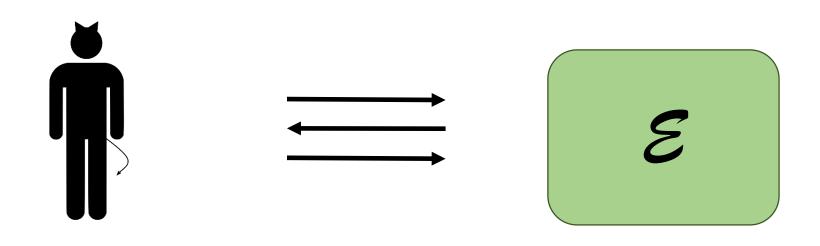
Introduction

Symmetric encryption

$$\mathcal{E}$$
 = (Kg, Enc, Dec)

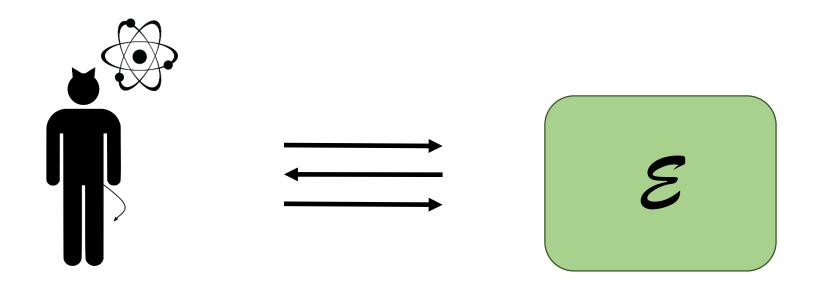


Adversaries I: Classical Security



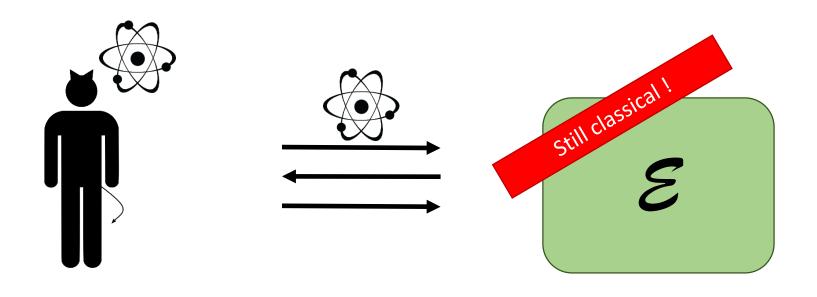
Adversary = probabilistic polynomial time (PPT) algorithm

Adversaries II: Post-Quantum Security



Adversary = bounded-error quantum polynomial time (BQP) algorithm

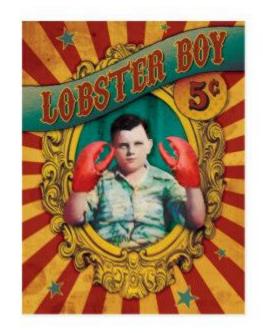
Adversaries III: Quantum Security



Adversary = bounded-error quantum polynomial time (BQP) algorithm

Why should we care?

- 1. Use in protocols
- 2. Quantum cloud
- 3. Quantum obfuscation



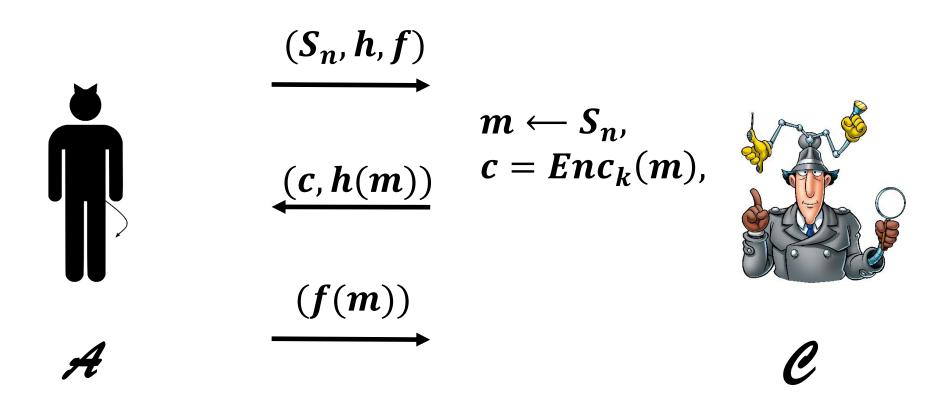
- 4. Side-channel attacks that trigger some measurable quantum behaviour
- 5. Oh, and because we can!

Semantic security (SEM)

- Simulation-based security notion
- Captures intuition:

It should not be possible to learn anything about the plaintext given the ciphertext which you could not also have learned without the ciphertext.

Semantic security (SEM): Challenge phase



 \mathcal{A} cannot do significantly better in the above game than a simulator \mathcal{S} that does not receive c.

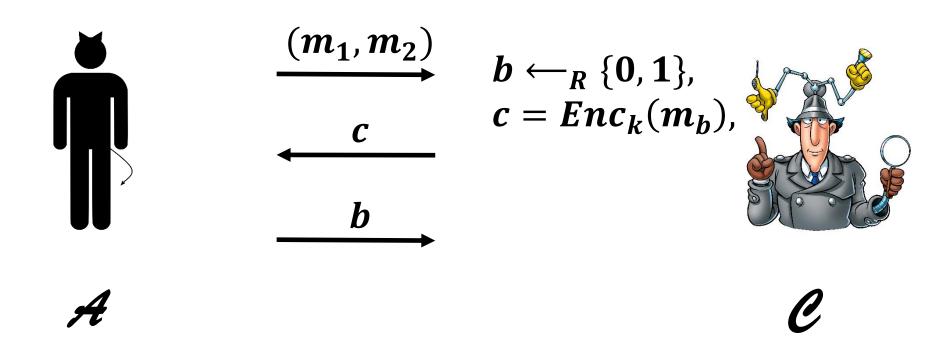
Indistinguishability (IND) (of ciphertexts)

- Pure game-based notion (no simulator)
- Easier to work with than SEM
- Intuition:

You cannot distinguish the encryptions of two messages of your choice

Shown to be equivalent to SEM!

Indistinguishability (IND): Challenge phase

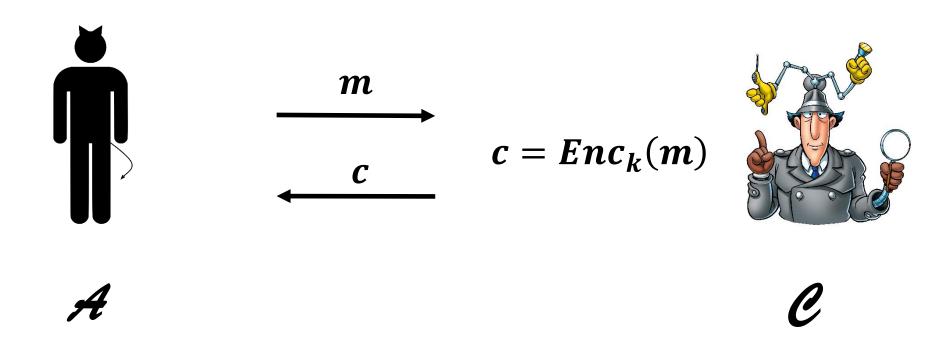


A cannot output correct b with significantly bigger probability than guessing.

Chosen plaintext attacks (CPA)

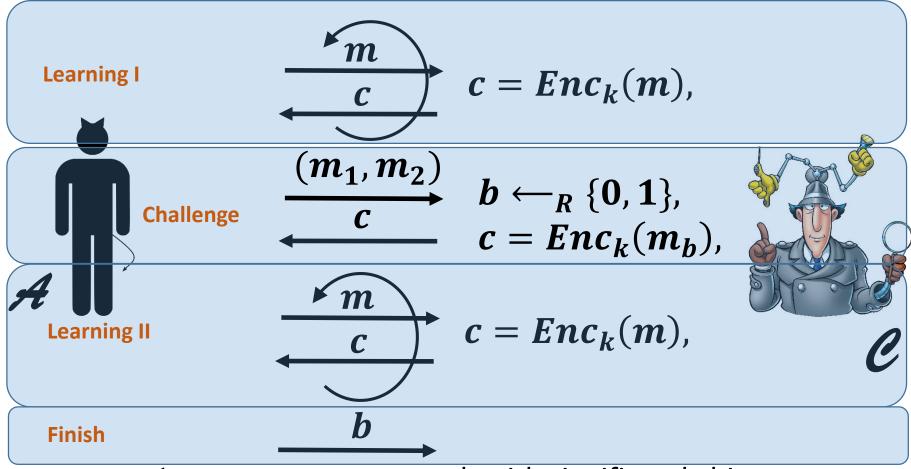
- Adversary might learn encryptions of known messages
- To model worst case: Let adversary chose messages
- Can be combined with both security notions IND
 & SEM
- Normally:
 Learning phases before & after challenge phase

CPA Learning phase



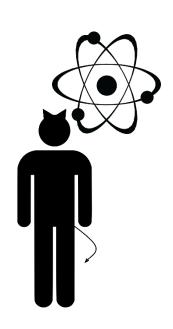
 \mathcal{A} can ask $q \in poly(n)$ queries in all learning phases.

IND-CPA



A cannot output correct b with significantly bigger probability than guessing.

Quantum security notions



Previous work

[BZ13] Boneh, Zhandry: "Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World", CRYPTO'13

Model encryption as unitary operator defined by:

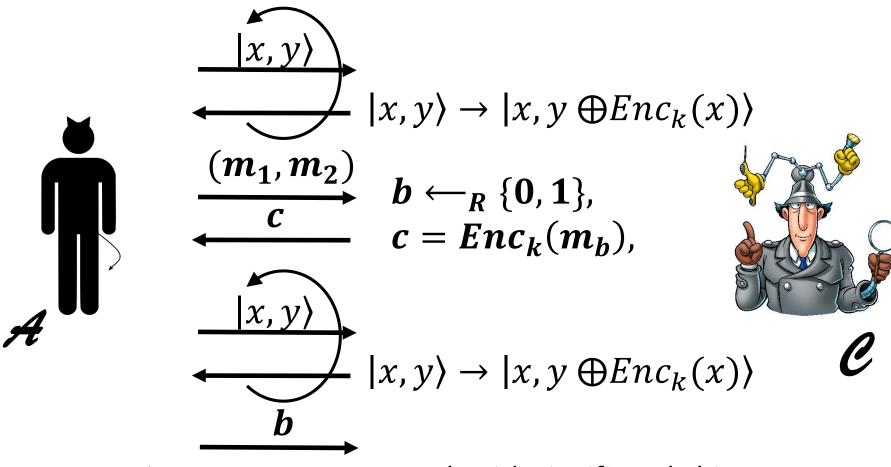
$$\sum_{x,y} |x,y\rangle \to \sum_{x,y} |x,y \oplus Enc_k(x)\rangle$$

(where $Enc_k(\cdot)$ is a classical encryption function)

Indistinguishability under quantum chosen message attacks (IND-qCPA)

- Give adversary quantum access in learning phase
- Classical challenge phase

IND-qCPA



A cannot output correct b with significantly bigger probability than guessing.

Indistinguishability under quantum chosen message attacks (IND-qCPA)

- Give adversary quantum access in learning phase
- Classical challenge phase

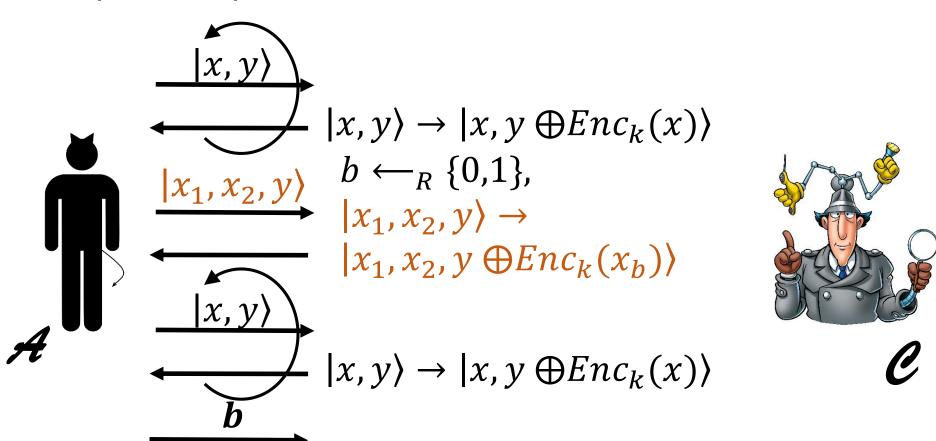
Can be proven strictly stronger than IND-CPA

- Why would you do this?
- If we assume adversary has quantum access, why not also when it tries to learn something new?

Fully-quantum indistinguishability under quantum chosen message attacks (fqIND-qCPA)

- Give adversary quantum access in learning phase
- Quantum challenge phase

fqIND-qCPA



A cannot output correct b with significantly bigger probability than guessing.

fqIND is unachievable [BZ13]

(example for 1-bit messages, with normalization amplitudes omitted)

 \mathcal{A} initializes register to: $H|0\rangle\otimes|0\rangle\otimes|0\rangle = \sum_{x}|x,0,0\rangle$ and then calls the encryption oracle with unknown bit b. Now:

fqIND is unachievable [BZ13]

(example for 1-bit messages, with normalization amplitudes omitted)

 \mathcal{A} initializes register to: $H|0\rangle\otimes|0\rangle\otimes|0\rangle=\sum_{x}|x,0,0\rangle$ and then calls the encryption oracle with unknown bit b. Now:

- if b = 0, the state becomes: $\sum_{x} |x, 0, \text{Enc}(x)\rangle$ (notice the entanglement between 1st and 3rd register);
- if b=1 instead, the state becomes: $\sum_{x} |x,0,\operatorname{Enc}(0)\rangle = H |0\rangle \otimes |0\rangle \otimes |\operatorname{Enc}(0)\rangle.$

fqIND is unachievable [BZ13]

(example for 1-bit messages, with normalization amplitudes omitted)

 \mathcal{A} initializes register to: $H|0\rangle\otimes|0\rangle\otimes|0\rangle=\sum_{x}|x,0,0\rangle$ and then calls the encryption oracle with unknown bit b. Now:

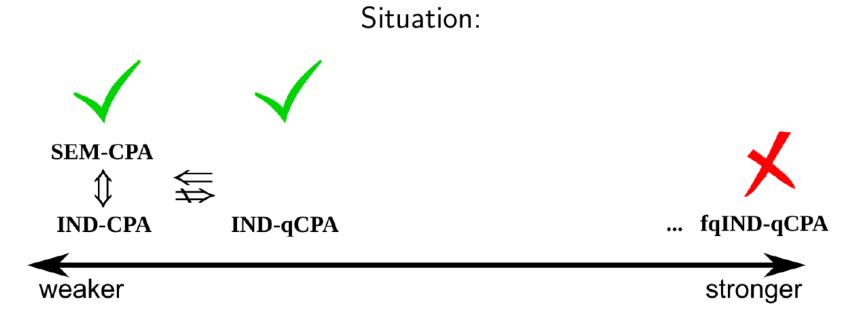
- if b = 0, the state becomes: $\sum_{x} |x, 0, \text{Enc}(x)\rangle$ (notice the entanglement between 1st and 3rd register);
- if b=1 instead, the state becomes: $\sum_{x} |x,0,\operatorname{Enc}(0)\rangle = H |0\rangle \otimes |0\rangle \otimes |\operatorname{Enc}(0)\rangle.$

Then A applies a Hadamard on the 1^{st} register and measures:

- if b = 0, the first register is completely mixed (irrespective of the Hadamard), and the measurement outcome is random;
- if b=1 instead, the first register is: $H^2|0\rangle = |0\rangle$, and the outcome is 0.

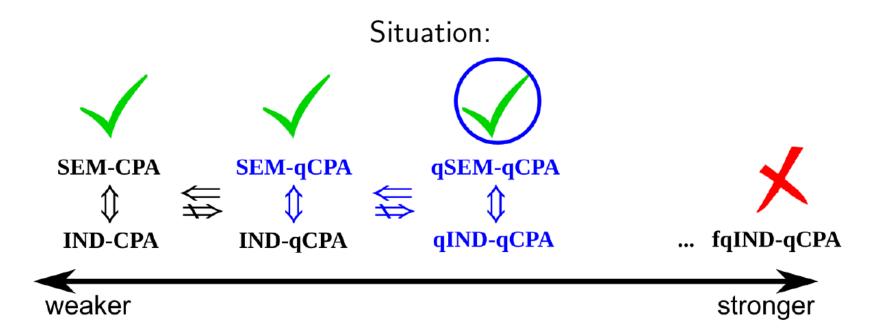
[BZ13] & our contribution

- A 'natural' notion of security (fqIND-qCPA) is unachievable
- Compromise: 'almost classical' notion of security (IND-qCPA)
- IND-qCPA is achievable and stronger than IND-CPA



[BZ13] & our contribution

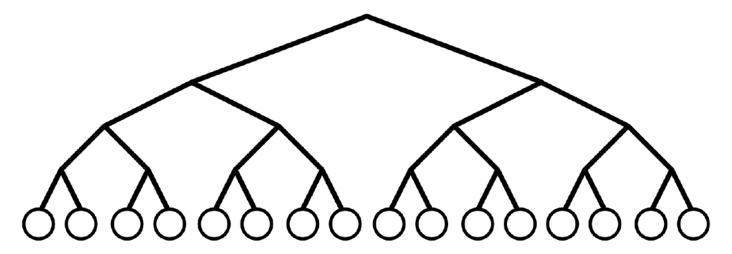
- A 'natural' notion of security (fqIND-qCPA) is unachievable
- Compromise: 'almost classical' notion of security (IND-qCPA)
- IND-qCPA is achievable and stronger than IND-CPA



fqIND: a seemingly natural extension of IND for quantum states

Theorem [BZ13]

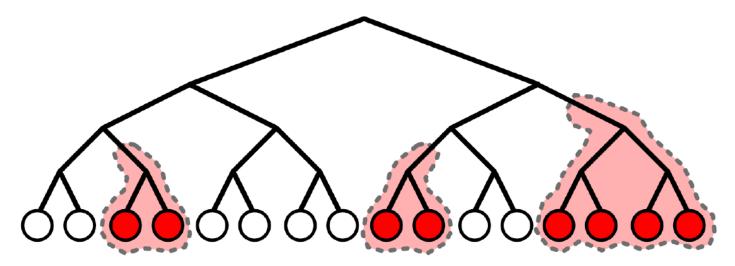
fqIND is unachievable (too strong).



fqIND: a seemingly natural extension of IND for quantum states

Theorem [BZ13]

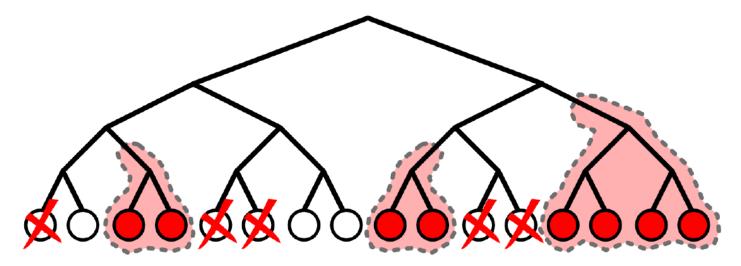
fqIND is unachievable (too strong).



fqIND: a seemingly natural extension of IND for quantum states

Theorem [BZ13]

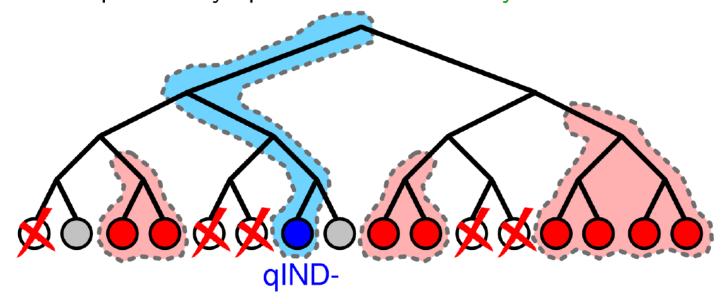
fqIND is unachievable (too strong).



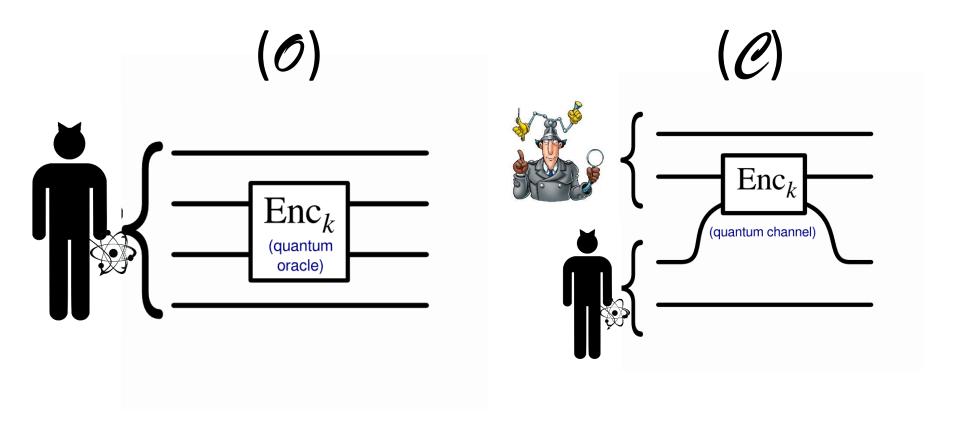
fqIND: a seemingly natural extension of IND for quantum states

Theorem [BZ13]

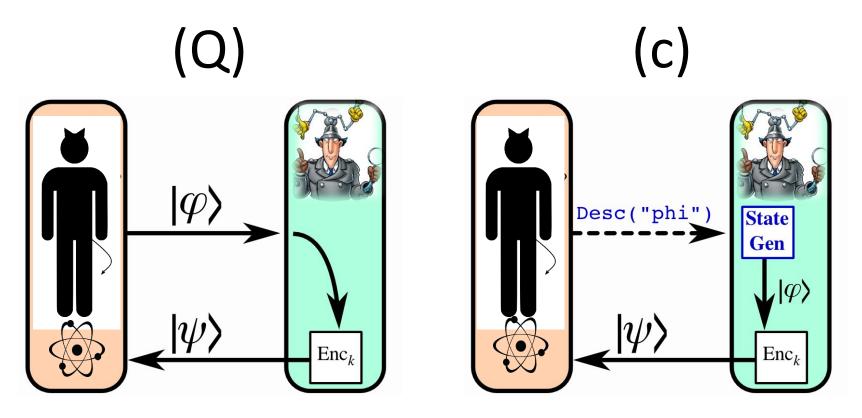
fqIND is unachievable (too strong).



Model: (0) vs (0)

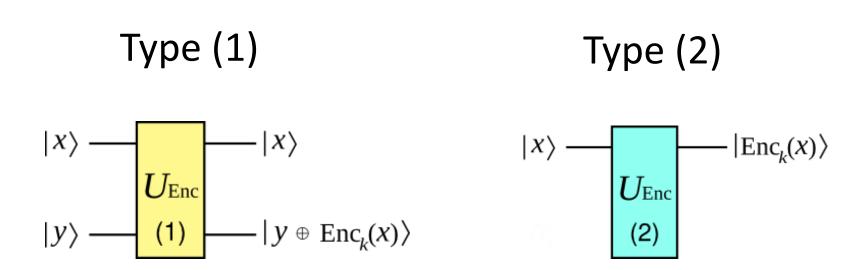


Model: (Q) vs (c)



Classical description of a quantum state ρ : a classical bitstring describing the quantum circuit outputting ρ from $|0...0\rangle$.

Model: Type (1) vs type (2)



Type-(2) oracles are also called *minimal* oracles¹.

Notice: in our specific case, and limited to the qIND phase, the two types are both meaningful.

¹Kashefi et al., 'A Comparison of Quantum Oracles', Phys. Rev. A 65

Quantum indistinguishability (qIND)

qIND challenge query: \mathcal{A} and \mathcal{C} are two BQP machines sharing a classical channel and a quantum channel.

 ${\mathcal A}$ sends ${\mathcal C}$ two classical, poly-sized descriptions of plaintext states $ho_0,
ho_1.$

 \mathcal{C} flips a random bit $b \stackrel{\$}{\longleftarrow} \{0,1\}$, and computes:

$$\psi = U_{\mathsf{Enc}} \rho_b U_{\mathsf{Enc}}^\dagger$$

and finally sends ciphertext state ψ to \mathcal{A} .

 \mathcal{A} 's goal is to guess b.

Quantum indistinguishability (qIND)

Quantum Indistinguishability (qIND)

For any BQP adversary A and any ρ_0, ρ_1 with efficient classical representations:

$$\left| \Pr[\mathcal{A}(\psi) = b] - \frac{1}{2} \right| \leq \operatorname{negl}(n),$$

where $\psi = U_{\mathsf{Enc}} \rho_b U_{\mathsf{Enc}}^\dagger$, and $b \xleftarrow{\$} \{0,1\}$.

Quantum Indistinguishability under qCPA (qIND-qCPA)

An encryption scheme is IND-qCPA secure if it is secure according to the qIND notion, augmented by a qCPA learning phase.

Separation example

Theorem

 $IND-qCPA \Rightarrow qIND-qCPA$

Separation example

Theorem

IND-qCPA ⇒ qIND-qCPA

Consider
$$[Gol04]^2$$
: sample $r \stackrel{\$}{\longleftarrow} \mathcal{R}$ and use a PRF $f: \mathcal{K} \times \mathcal{R} \to \mathcal{M}$. Then: $Enc_k(x) := (x \oplus f_k(r), r)$

Theorem [BZ13]

The Goldreich scheme is IND-qCPA secure, provided the PRF is quantum-secure.

Separation example

Theorem

 $IND-qCPA \Rightarrow qIND-qCPA$

Consider
$$[Gol04]^2$$
: sample $r \stackrel{\$}{\longleftarrow} \mathcal{R}$ and use a PRF $f: \mathcal{K} \times \mathcal{R} \to \mathcal{M}$. Then: $Enc_k(x) := (x \oplus f_k(r), r)$

Theorem [BZ13]

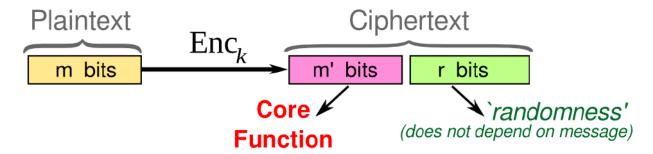
The Goldreich scheme is IND-qCPA secure, provided the PRF is quantum-secure.

Theorem

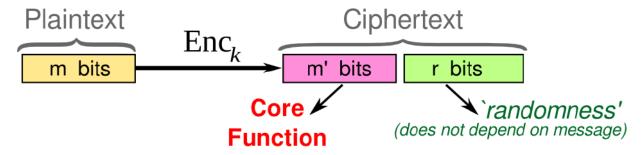
The Goldreich scheme is *not* qIND-qCPA secure.

²O. Goldreich: 'Foundations of Cryptography: Volume 2'

Impossibility result



Impossibility result

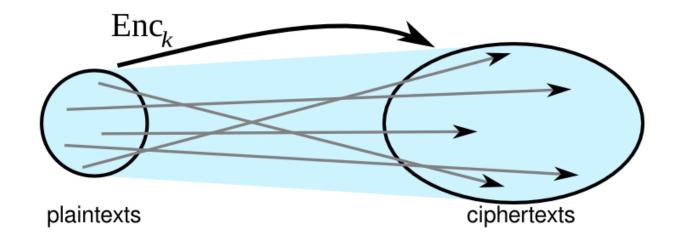


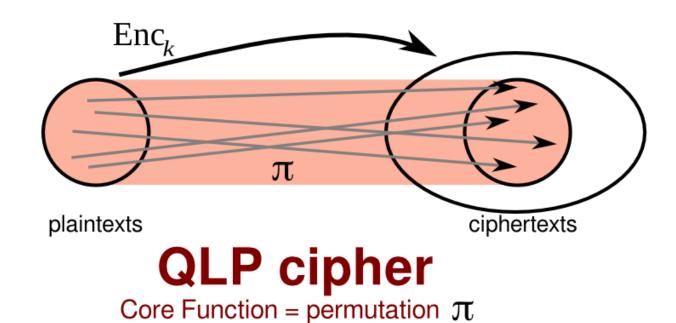
quasi-length-preserving (QLP): core function is bijective (m = m')

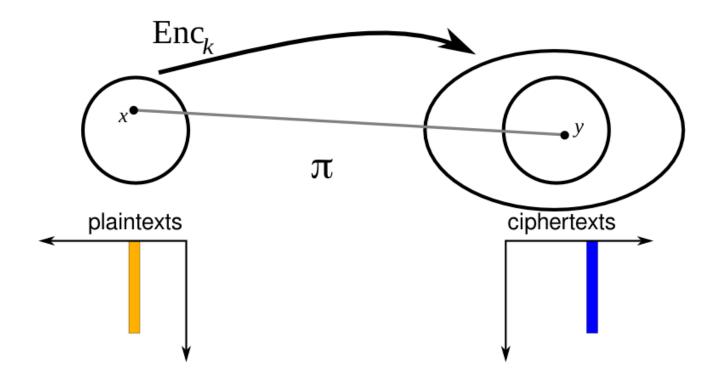
- Goldreich's scheme
- OTP
- ECB block ciphers
- stream ciphers

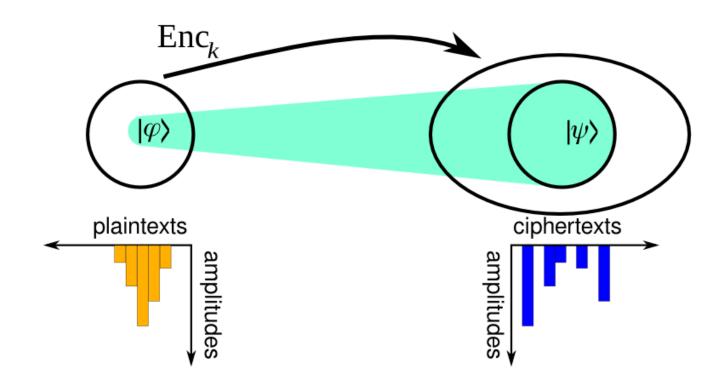
Theorem

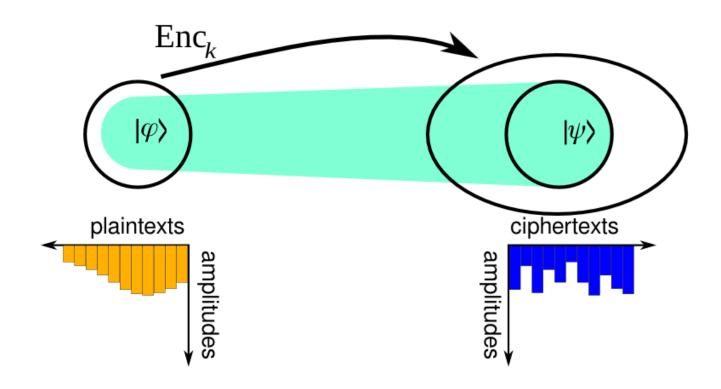
If a symmetric scheme is QLP, then it is *not* qIND-qCPA secure.

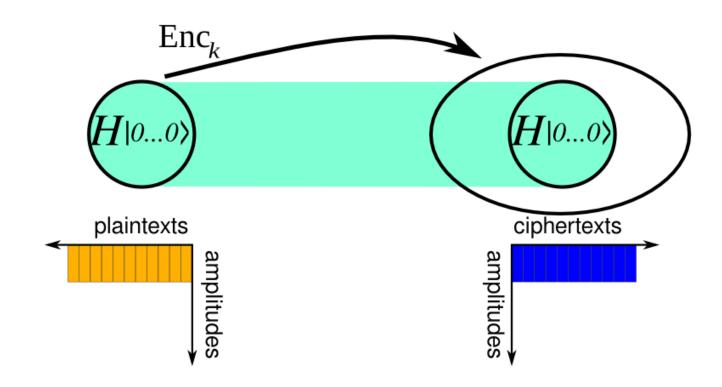


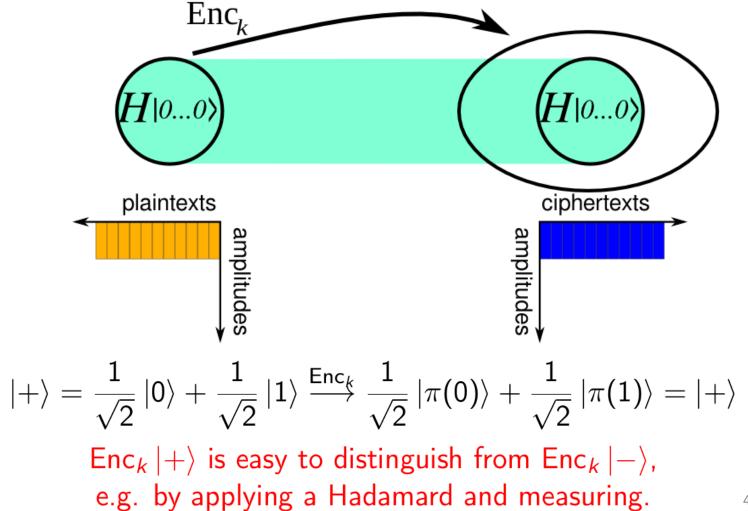




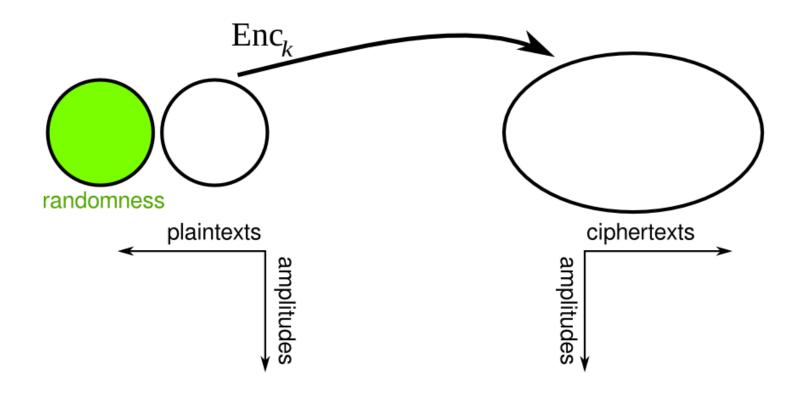


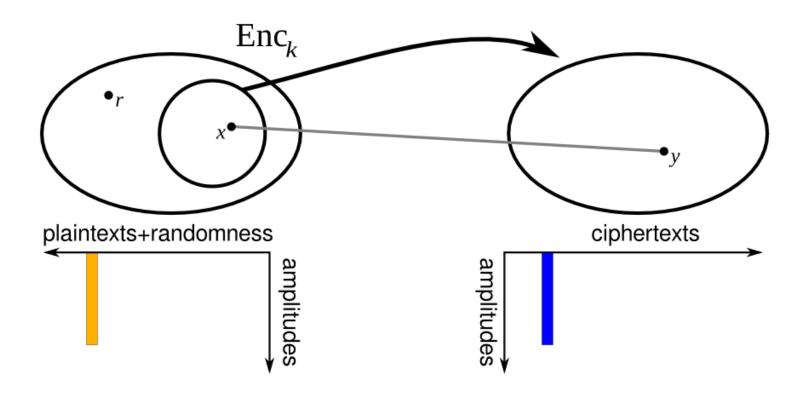


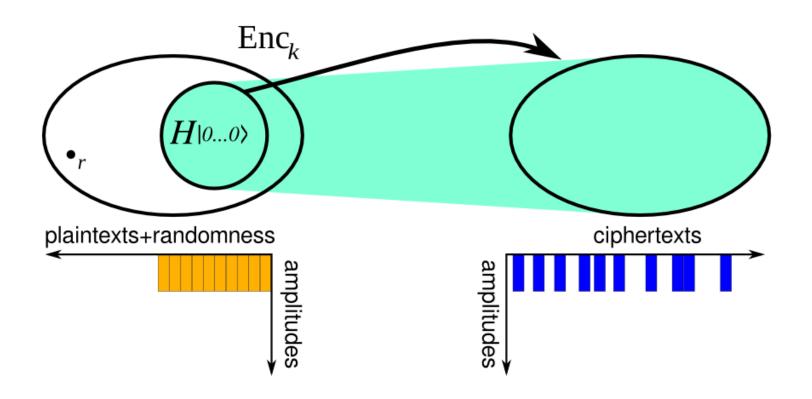


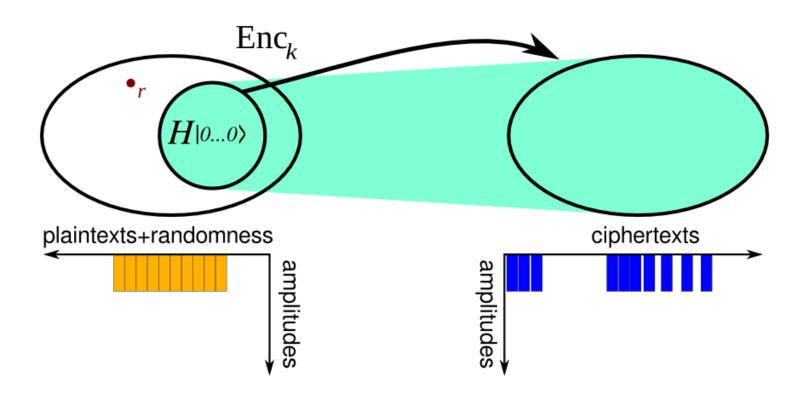


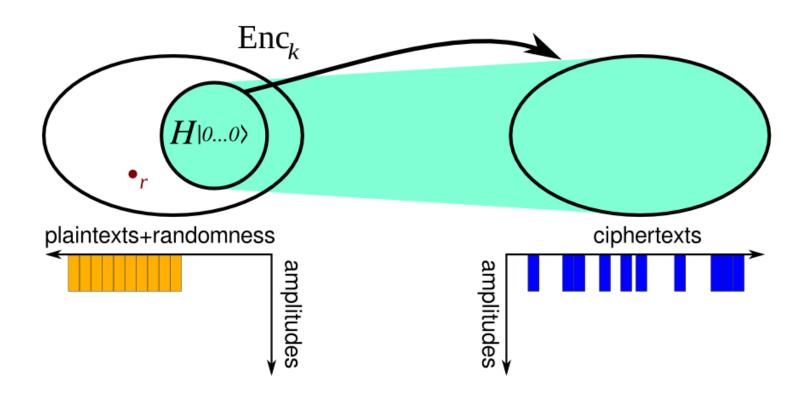
47











Secure Construction

Π family of quantum-secure pseudorandom permutations (QPRP)

Construction

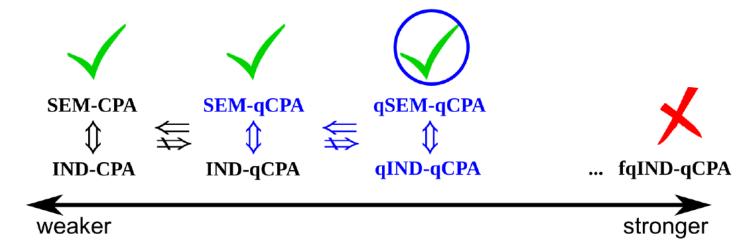
- Generate key: sample $(\pi, \pi^{-1}) \leftarrow \Pi$
- Encrypt message x: pad with n bits of randomness r and set $y = \pi(r||x)$
- Decrypt y: truncate the first n bits of $\pi^{-1}(y)$

Theorem

The above scheme is qIND-qCPA secure.

(Idea of proof: show that for every two plaintext states φ_0, φ_1 , the trace distance of the states ρ_0, ρ_1 obtained by considering their encryption under a mixture of every possible key is negligible)

Conclusion



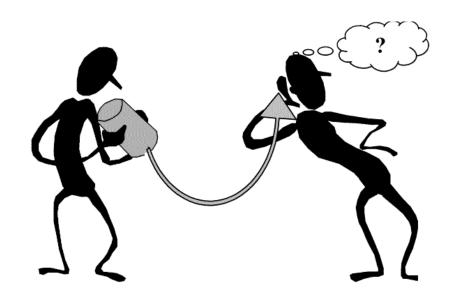
Additional results:

- can get rid of the 'classical description' restriction
- arbitrary length messages: 'randomized' ECB mode

Future directions:

- public-key encryption
- CCA security
- patch IND-qCPA \Rightarrow qIND-qCPA

Thank you! Questions?



https://eprint.iacr.org/2015/355