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Adversaries I:
Classical Security

Adversary = probabilistic polynomial time (PPT) algorithm




Adversaries Il
Post-Quantum Security
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Adversary = bounded-error qguantum polynomial time (BQP) algorithm




Adversaries Il
Quantum Security
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Adversary = bounded-error qguantum polynomial time (BQP) algorithm



Why should we care?

1. Usein protocols
2. Quantum cloud

3. Quantum obfuscation

4. Side-channel attacks that trigger some measurable
guantum behaviour

5. Oh, and because we can!



Semantic security (SEM)

* Simulation-based security notion
* Captures intuition:

It should not be possible to learn anything about
the plaintext given the ciphertext which you could
not also have learned without the ciphertext.



Semantic security (SEM):
Challenge phase

(Sn, b, f)

(f(m))
A C
» cannot do significantly better in the above game
than a simulator S that does not receive c.



Indistinguishability (IND)
(of ciphertexts)

* Pure game-based notion (no simulator)
e Easier to work with than SEM

* Intuition:

You cannot distinguish the encryptions of two
messages of your choice

* Shown to be equivalent to SEM!



Indistinguishability (IND):
Challenge phase

. (ml! mZ)

A e

» cannot output correct b with significantly bigger
probability than guessing.
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Chosen plaintext attacks (CPA)

* Adversary might learn encryptions of known
messages

* To model worst case: Let adversary chose messages

e Can be combined with both security notions — IND
& SEM

 Normally:
Learning phases before & after challenge phase



CPA Learning phase

¥
m
w c ¢ = Enc;(m)
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##can ask g € poly(n) queries in all learning
phases.
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IND-CPA
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» cannot output correct b with significantly bigger
probability than guessing.
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Quantum security @p
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notions




Previous work

[BZ13] Boneh, Zhandry: "Secure Signatures and
Chosen Ciphertext Security in a Quantum Computing

World", CRYPTO'13

Model encryption as unitary operator defined by:

D )= x5y @Ene(x)
X,y X,y

(where Ency () is a classical encryption function)
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Indistinguishability under quantum
chosen message attacks (IND-gCPA)

* Give adversary quantum access in learning phase

e Classical challenge phase



IND-gCPA
X, ¥)

x,y) = v,y ®Ency () €

b

—-
» cannot output correct b with significantly bigger

probability than guessing.
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Indistinguishability under quantum
chosen message attacks (IND-gCPA)

* Give adversary quantum access in learning phase

e Classical challenge phase

e Can be proven strictly stronger than IND-CPA

 Why would you do this?

* If we assume adversary has quantum access, why
not also when it tries to learn something new?



Fully-guantum indistinguishability
under quantum chosen message
attacks (fgIND-qCPA)

* Give adversary quantum access in learning phase

* Quantum challenge phase



fqIND-qCPA

X, ¥)
|x1y> - |X,y @Ean(X)>
|X1, X9, y> b R {0'1}'

- |X1,X2,y> —
T [x1, x5,y ®Ency(xp))

1, y)

#

|X,y> - |x1y @Enck(x)>
b
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» cannot output correct b with significantly bigger
probability than guessing.
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fgIND is unachievable [BZ13]

(example for 1-bit messages, with normalization amplitudes omitted)

A initializes register to: H|0) ® |0) ® |0) = >_ |x,0,0)
and then calls the encryption oracle with unknown bit b. Now:



fgIND is unachievable [BZ13]

(example for 1-bit messages, with normalization amplitudes omitted)

A initializes register to: H|0) ® |0) ® |0) = > |x,0,0)
and then calls the encryption oracle with unknown bit b. Now:

e if b =0, the state becomes: ) |x,0, Enc(x))
(notice the entanglement between 1st and 3rd register);

e if b =1 instead, the state becomes:
> . |x,0,Enc(0)) = H|0) ® |0) ® |[Enc(0)).
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fgIND is unachievable [BZ13]

(example for 1-bit messages, with normalization amplitudes omitted)

A initializes register to: H|0) ® |0) ® |0) = > |x,0,0)
and then calls the encryption oracle with unknown bit b. Now:
o if b=0, the state becomes: > |x,0, Enc(x))

(notice the entanglement between 1st and 3rd register);

e if b =1 instead, the state becomes:
> . |x,0,Enc(0)) = H|0) ® |0) ® |[Enc(0)).

Then A applies a Hadamard on the 1° register and measures:

e if b =0, the first register is completely mixed (irrespective of
the Hadamard), and the measurement outcome is random;

e if b =1 instead, the first register is: H2|0) = |0), and the
outcome is 0.
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[BZ13] & our contribution

e A 'natural’ notion of security (fqIND-qCPA) is unachievable
e Compromise: ‘almost classical’ notion of security (IND-qCPA)
e IND-qCPA is achievable and stronger than IND-CPA

v Y
SEM(—ICPA g x

IND-CPA IND-qCPA ... fqIND-qCPA

Situation:

weaker stronger
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[BZ13] & our contribution

e A "natural’ notion of security (fqIND-qCPA) is unachievable

o Compromise: ‘almost classical’ notion of security (IND-qCPA)
e IND-qCPA is achievable and stronger than IND-CPA

Situation:
SEM-CPA SEM-qCPA qSEM-qCPA
<= <
= =
P D 0
IND-CPA IND-qCPA qIND-qCPA ... fqIND-qCPA

weaker stronger

Our contribution! -



How to define gIND-qCPA?

fqIND: a seemingly natural extension of IND for quantum states

Theorem [BZ13]
fqIND is unachievable (too strong).

For fqIND-qCPA many assumptions are implicitly made. Instead,
we explore every option: ‘tree’ of security definitions
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How to define gIND-qCPA?

fqIND: a seemingly natural extension of IND for quantum states

Theorem [BZ13]

fqIND is unachievable (too strong).

For fqIND-qCPA many assumptions are implicitly made. Instead,
we explore every option: ‘tree’ of security definitions

..--‘

30



Model: (@) vs (€)

(0)

Enc, —

(quantum
oracle)

(quantum channel)




Model: (Q) vs (c)
(c)

' ' Y R
Desc("phi") State
------- > Gen
¢I¢>
\——_/ —

Classical description of a quantum state p: a classical bitstring
describing the quantum circuit outputting p from |0...0).

( Enc k




Model: Type (1) vs type (2)

UEnc
lyy — (1)

—— |y @ Enc(x))

Type (2)

| X) —

UEm:
(2)

— IEan(X)>

Type-(2) oracles are also called minimal oracles!.

Notice: in our specific case, and limited to the qIND phase, the two
types are both meaningful.

1Kashefi et al., ‘A Comparison of Quantum Oracles’, Phys. Rev. A 65 33



Quantum indistinguishability (qIND)

qIND challenge query: A and C are two BQP machines sharing a
classical channel and a quantum channel.

A sends C two classical, poly-sized descriptions of plaintext states
p0, P1.-

C flips a random bit b & {0,1}, and computes:

¢ — UEncpb Uénc

and finally sends ciphertext state v to A.

A's goal is to guess b.
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Quantum indistinguishability (qIND)

For any BQP adversary A and any pg, p1 with efficient classical
representations:

PrAW) = 6] | < negl (n).

where 1) = UEncprT and b < {0,1}.

Enc’

Quantum Indistinguishability under qCPA (qIND-qCPA)

An encryption scheme is IND-qCPA secure if it is secure according
to the qIND notion, augmented by a qCPA learning phase.




Separation example

IND-qCPA % qIND-qCPA \
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Separation example

IND-qCPA = qIND-qCPA \

Consider [Gol04]? : sample r > R and use a PRF
f: K xR — M. Then: Enci(x) := (x D fi(r), r)

Theorem [BZ13]

The Goldreich scheme is IND-qCPA secure, provided the PRF is
quantum-secure.
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Separation example

IND-qCPA % qIND-qCPA \

Consider [Gol04]? : sample r > R and use a PRF
f: K xR — M. Then: Enci(x) := (x D fi(r), r)

Theorem [BZ13]

The Goldreich scheme is IND-qCPA secure, provided the PRF is
quantum-secure.

The Goldreich scheme is not qIND-qCPA secure. \

20. Goldreich: ‘Foundations of Cryptography: Volume 2’
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Impossibility result

Plaintext
e —

Enc

Ciphertext

k —

.

m bits

= m' bits

r bits

Core /

Function

\‘randomness'
(does not depend on message)
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Impossibility result

Plaintext Ciphertext
! \— EHCk — — —
m bits = m' bits r bits
Core # \‘randomness’
Function (does not depend on message)

quasi—length-preserving (QLP): core function is bijective (m = m’)
e Goldreich’s scheme
e OTP
e ECB block ciphers

e stream ciphers

If a symmetric scheme is QLP, then it is not qIND-qCPA secure. \




The attack

Enc, ——\
—
>
>
P
plaintexts ciphertexts
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The attack

NG —

—(O

plaintexts ciphertexis

QLP cipher

Core Function = permutation JT
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The attack

O~ (D

plaintexts mphertexts

-
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The attack

plalntexts mphertexts

-

sepm”dwe

sopnydwe
-

-~
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The attack

Enc

plaintexts mphertexts

|

sepnmdwe
sapnl!ldwe

-



The attack

Enck
plaintexts ciphertexts
“TITIT) & %
j=i j=i
g E
3 &

-
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The attack

Enck
plaintexts ciphertexts
NNE 5
3 3
1 1 Enc 1 1
= -0 1) — 0)) + —= |7(1)) =
+) \5|> \f|> \/ilvr()Hﬂlﬂ()) |+

Enck |[+) is easy to distinguish from Ency |—),
e.g. by applying a Hadamard and measuring. 47



The solution

E‘ffﬁ_/r —~\

randomness
plaintexts ciphertexts

S

-

sapnydwe

sepnydwe
-

-
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The solution

plaintexts+randomness
-

sapnydwe
sepnyjdwe

-

—®y

ciphertexts
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The solution

Enc,
plaintexts+randomness

sapnyljdwe

3

sepnyiidwe

3

ciphertexts
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The solution

Enc,
plaintexts+randomness

=TI

sapnydwe

-

sepnyijdwe

ciphertexts
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The solution

Enc,
plaintexts+randomness

“ I

sapnydwe

-

sepnyijdwe

-

ciphertexts
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Secure Construction

[1 family of quantum-secure pseudorandom permutations (QPRP)

o Generate key: sample (7,77 1) < [

e Encrypt message x: pad with n bits of randomness r and set
y = m(r||x)

o Decrypt y: truncate the first n bits of 7=1(y)

v

The above scheme is qIND-qCPA secure. \

(Idea of proof: show that for every two plaintext states g, 1, the
trace distance of the states pg, p1 obtained by considering their
encryption under a mixture of every possible key is negligible)
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Conclusion

v v @

SEM-CPA SEM-qCPA qSEM-qCPA
¢t = ¢ = 9
> =SS
IND-CPA IND-qCPA qIND-qCPA ... fqIND-qCPA
weaker stronger

Additional results:
e can get rid of the ‘classical description’ restriction
e arbitrary length messages: ‘randomized’ ECB mode

Future directions:
e public-key encryption
e CCA security
e patch IND-qCPA = qIND-qCPA
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Thank you!
Questions?

g &

https://eprint.iacr.org/2015/355
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