The H2020 PQCRYPTO project, an update

Andreas Hülsing, TU/e

14 September 2017

5th ETSI/IQC Workshop on Quantum-Safe Cryptography

Post-Quantum Cryptography for Long-term Security

- Project funded by EU in Horizon 2020.
- Starting date 1 March 2015, runs for 3 years.
- 11 partners from academia and industry, TU/e is coordinator

What does PQCRYPTO mean for you?

- Expert recommendations for post-quantum secure cryptosystems.
- Recommended systems will get faster/smaller as result of PQCRYPTO research.
- More benchmarking to compare cryptosystems.
- Cryptographic libraries will be made freely available for several computer architectures.
- Find more information online at http://pqcrypto.eu.org/.
- Final reports next summer.
- Follow us on twitter https://twitter.com/pqc_eu.

Initial recommendations (September 2015)

- **Symmetric encryption** Thoroughly analyzed, 256-bit keys:
 - ▶ AES-256
 - Salsa20 with a 256-bit key

Evaluating: Serpent-256, ...

Symmetric authentication Information-theoretic MACs:

- GCM using a 96-bit nonce and a 128-bit authenticator
- Poly1305

► Public-key encryption McEliece with binary Goppa codes:

▶ length n = 6960, dimension k = 5413, t = 119 errors

Evaluating: QC-MDPC, Stehlé-Steinfeld NTRU, ...

- **Public-key signatures** Hash-based (minimal assumptions):
 - XMSS with any of the parameters specified in CFRG draft
 - ► SPHINCS-256

Evaluating: HFEv-, ...

The last year

- ► ECRYPT-CSA executive school in Eindhoven, ~ 40 people.
- PQCRYPTO school in Eindhoven (at TU/e) 120 Participants, 21 lectures, videos & slides online:

https://2017.pqcrypto.org/school/schedule.html

PQCrypto 2017, Utrecht
67 submissions, 23 papers accepted;
226 participants; videos to come.
https://2017.pqcrypto.org/conf

Selected research results

(only minimally subjective)

Post-quantum signatures with formal security arguments

The quantum accessible ROM

- ▶ ROM: every party gets access to *ideal* hash function.
- Hash-function has public description.
- Assuming quantum adversaries we need to give quantum access!

Results

- Picnic: Signatures from symmetric key primitives.¹
- ► SOFIA: Signatures based on MQ-based identification.²

¹Chase, Derler, Goldfeder, Orlandi, Ramacher, Rechberger, Slamanig, Zaverucha. Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. <u>ia.cr/2017/279</u>

²Chen, Hülsing, Rijneveld, Samardjiska, Schwabe. SOFIA: MQ-based signatures in the QROM. <u>ia.cr/2017/680</u>

Hash function security

Common belief

- ► Grover is provably optimal ⇒ Attacks gain at most a square-root factor.
- Only in the worst case if function is random!

Constructive results

- Also only square-root speed-up in average case (for random function).³
- Sponges are collapsing, CR, SPR, OW, if block function is random function or OW-permutation.⁴

Destructive result

▶ Can parallelize Grover search for 1 out of t images on p small cores to achieve $\sqrt{N/pt^{1/2}}$ runtime.⁵

⁴Czajkowski, Groot Bruinderink, Hülsing, Schaffner, Unruh. Post-quantum security of the sponge onstruction. QCRYPT'17.

 $^{^3}$ Hülsing, Rijneveld, Song. Mitigating Multi-Target Attacks in Hash-based Signatures. PKC'16. (OW / SPR, CR was shown by Zhandry)

Lattice-based KEMs

Scheme	PQ sec.	ct?		Cycles		Bytes
CCA2-secure KEMs						
Streamlined NTRU Prime 4591 ⁷⁶¹	137	yes	K:	6115384	sk:	1600
			E:	59600	pk:	1218
			D:	97452	c:	1047
spLWE-KEM	128	?	K:	≈ 336700	sk:	?
(128-bit PQ parameters)			E:	≈ 813800	pk:	?
			D:	pprox 785200	c:	804
Kyber	161	yes	K:	77892	sk:	2400
(AVX2 optimized)			E:	119652	pk:	1088
			D:	125736	c:	1184
NTRU-KEM	123	yes	K:	307 914	sk:	1422
			E:	48 646	pk:	1140
			D:	67 338	с:	1281
CCA2-secure public-key encryption						
NTRU ees743ep1	159	no	K:	1194816	sk:	1 1 2 0
			E:	57440	pk:	1027
			D:	110604	c:	980
Lizard	128	no	K:	≈ 97573000	sk:	466944
(recommended parameters)			E:	≈ 35000	pk:	2031616
			D:	≈ 80800	c:	1072

Table: Source: Hülsing, Rijneveld, Schanck, Schwabe. High-speed key encapsulation from NTRU. CHES 2017. (See source for references and more details)

Finding short vectors

Not enough study in literature

- SVP: find shortest nonzero vector in a lattice.
- Big improvements in attack speed in last several years.
- Breaking SVP breaks lattice-based crypto.
- Lattice-based crypto uses additional structure: ideal lattices, approximation vectors, FHE.
- Fast quantum attack recently developed against Gentry's original FHE system.⁶

Destructive results

► Fast non-quantum attack against a reasonable FHE system.⁷

⁶Eisenträger, Kitaev, Hallgren, Song, STOC'14; Campbell, Groves, Shepherd, 2014; Biasse, Song, SODA'16.

⁷Bauch, Bernstein, de Valence, Lange, van Vredendaal, Short generators without quantum computers: the case of multiquadratics. Eurocrypt'17.

Discrete Gaussian sampling

- Important building block in lattice-based crypto.
- Used to "hide" secrets.
- Hard to do fast, constant-time implementation.

Destructive results

Many existing samplers vulnerable to side-channel attacks.⁸

Constructive results

- Can switch to *rounded Gaussians* for signatures.
- Sample continuous Gaussian and round to nearest Integer.
- Rounded Gaussians can be sampled efficiently in constant-time.

⁸Pessl, Groot Bruinderink, Yarom. To BLISS-B or not to be – Attacking strongSwan's Implementation of Post-Quantum Signatures. CCS'17

Coming soon

NIST (Not-)Competition

- Several submissions in progress.
- Signatures, KEX and KEM.
- Not just plain published schemes but optimized variants.

Nature article on post-quantum crypto

Really soon: today's issue

XMSS RFC

Thank you

- All papers can be found online at http://pqcrypto.eu.org/papers.html.
- ► For previous works, author lists etc.pp. see papers.
- Find more information online at http://pqcrypto.eu.org/.
- Follow us on twitter https://twitter.com/pqc_eu.

