Post-quantum security of the sponge construction

Andreas Hülsing

Based on joined work with Jan Czajkowski, Christian Schaffner, Leon Groot Bruinderink, Dominique Unruh

Post-quantum security of hash functions

- Hashes ubiquitous in public key crypto
- Public function -> Adversary can run on quantum computer
- Believe: Grover is best adversary can do
 - True if hash behaves like random function (Zhandry'15, Hülsing, Rijneveld, Song '16)
- What if hash has structure?
- What if classical properties do not suffice?

What if hash has structure?

Hash function design

- Create fixed input size building block
- Use building block to build compression function
- Use "mode" for length extension

SHA2: Most classical results carry over

(CR / OW) compression function \Rightarrow (CR / OW) Hash

Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche. Cryptographic Sponge Functions. 2007

Theorem ([BDPV07] Informally):

If f is a random permutation or transformation, the expected complexity for differentiating a sponge S_f from a random oracle is $\mathcal{O}(2^{c/2})$.

- Proof inherently query based.
- Proof requires knowledge of queries to S_f .

Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche. Cryptographic Sponge Functions. 2007

Note: If f is random permutation, f is not one-way, $f(s \oplus (x||0^c))$ is not collision resistant, and f^{left} and f^{right} are neither one-way nor collision-resistant. (If adversary gets access to f^{-1})

What if classical properties do not suffice?

Collapsing (Unruh, 2016)

- Quantum version of collision resistance
- Example: collapse-binding commitments

 $\forall (A,B)$ - quantum PPT adversary :

 $|Pr[b = 1 : Game1] - Pr[b = 1 : Game2]| \approx 0$

Results (http://ia.cr/2017/771)

- Proofs for sponges if block function f is random function or random one-way permutation (does not cover SHA3!).
- Collision-resistance from collision-resistance and zero-preimage resistance of f^{left} and f^{right}
- Collapsing from collapsing and zero-preimage resistance of f^{left} and f^{right} .
- Quantum attack that meets lower bounds.

- Hybrid argument
- Omitted here: Have to deal with preimages of 0^c

Careful: This gives the misleading impression that all messages in superposition are of equal length!

Thank you! Questions?

