Topics in Post-Quantum Cryptography

Andreas Hülsing

State of affairs

- Standards track
 - Stateful hash-based signatures: XMSS, LMS (Internet drafts)
 - NTRUEncrypt (IEEE Std 1363.1, X9.98)
- Hundreds of proposed schemes

Initial recommendations

- Symmetric encryption Thoroughly analyzed, 256-bit keys:
 - ► AES-256
 - Salsa20 with a 256-bit key

Evaluating: Serpent-256, ...

- ► **Symmetric authentication** Information-theoretic MACs:
 - ► GCM using a 96-bit nonce and a 128-bit authenticator
 - ► Poly1305
- ► **Public-key encryption** McEliece with binary Goppa codes:
 - ▶ length n = 6960, dimension k = 5413, t = 119 errors

Evaluating: QC-MDPC, Stehlé-Steinfeld NTRU, ...

- Public-key signatures Hash-based (minimal assumptions):
 - ► XMSS with any of the parameters specified in CFRG draft
 - ► SPHINCS-256

Evaluating: HFEv-, . . .

"Official" developments

- Feb `13: First PQC draft in IRTF's CFRG
- Sep `13: ETSI holds first PQC WS (afterwards annually)
- April `15: NIST holds conference on PQC
- Aug `15: NSA announces transition to PQC
- Feb `16: NIST announces `PQC competition'
- Dec `16: NIST opens call for proposals

Scheduled:

- Nov `17: NIST submission deadline
- 2024: "Draft standards ready" (NIST, Feb `16)

NIST Competition

NIST Competition

SPHINCS

- Selection of
 - Digital signature and
 - Public key encryption / Key exchange
- Probably > 100 submissions
- No single winner
- Classically this will spark interest in cryptanalysis

Up next

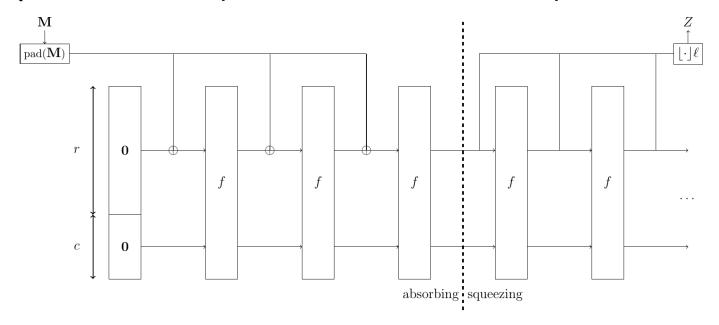
(Quantum) security

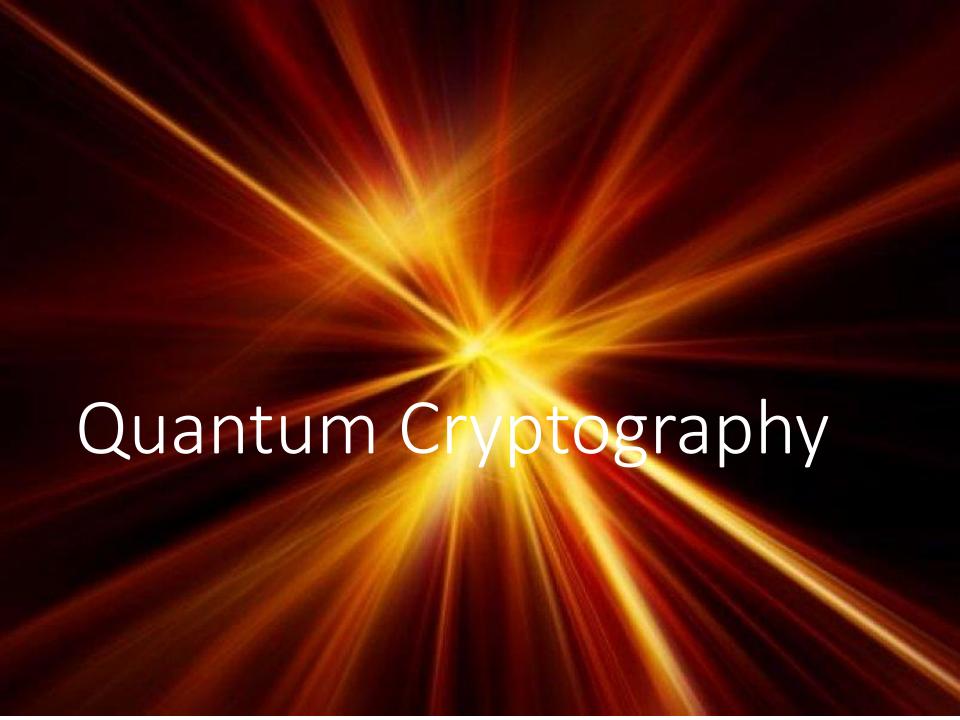
Shor's algorithm (1994)

- Quantum computers can do FFT very efficiently
- Can be used to find period of a function
- This can be exploited to factor efficiently (RSA)
- Shor also shows how to solve discrete log efficiently (DSA, DH, ECDSA, ECDH)

Grover's algorithm (1996)

- Quantum computers can search N entry DB in $\Theta(\sqrt{N})$
- Application to symmetric crypto
- Nice: Grover is provably optimal (For random function)
- Double security parameter.


(Quantum) security


- Are attacks using Grover efficient?
- Is Grover speed-up the only thing we can get?
 - Currently working to prove this for hash functions (under certain assumptions)
- Are the PQ problems classically secure?
- What is the exact security?

- We never had "provably secure crypto"
 - Can we classically break RSA? Who knows!

Results

 Sponges are quantum collision-resistant if block function is random function or random one-way permutation (does not cover SHA3!)

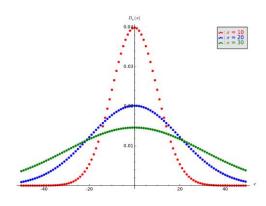
Why not beat 'em with their own weapons?

- QKD: Quantum Key distribution.
 - Based on some nice quantum properties: entanglement
 & collapsing measurments
 - Information theoretic security (at least in theory)
 -> Great!
 - For sale today!
- So why don't we use this?
- Only short distance, point-to-point connections!
 - Internet? No way!
- Longer distances require "trusted-repeaters" ©
 - We all know where this leads...

Implementation security

Side-channels

- Implementations might leak secret information through
 - timing,
 - cache-access patterns,
 - electro-magnetic radiation,
 - power consumption...


Not covered by standard security models.

Implementation security

- Still hard for traditional schemes
- New PQ Problems come with new basic operations
- Not much research yet (for PQC)
- But a lot of experience

Discrete Gaussians

- Basic building block in lattice-based cryptography.
- Used to "hide" secret.
- Unknown how to implement efficiently in constant time.

Results

- Attack on BLISS [DDLL'13], implemented in StrongSwan library.
- Practical cache attack on both implemented samplers.
- First algorithm to "un-hide" secret key given sidechannel information for Gaussian noise.
- Can compute secret key after < 5000 signatures.

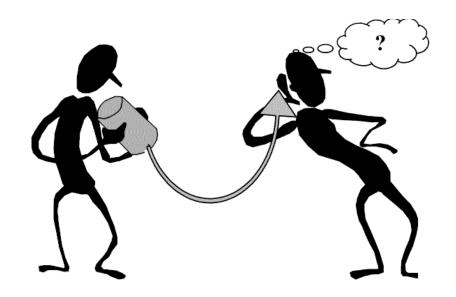
Ongoing:

• Solution: Allow for constant-time sampler by changing the distribution.

Integration

Signatures (Source https://ia.cr/2017/279)

Scheme	Gen	Sign	Verify	sk	pk	$ \sigma $	Model
	[ms]	[ms]	[ms]	[bytes]	[bytes]	[bytes]	
Fish-1-316	0.01	364.11	201.17	32	64	108013	ROM
Fish-10-38	0.01	29.73	17.46	32	64	118525	ROM
Fish-42-14	0.01	13.27	7.45	32	64	152689	ROM
Picnic-10-38	0.01	31.31	16.30	32	64	195458	QROM
MQ 5pass	0.96	7.21	5.17	32	74	40952	ROM
SPHINCS-256	0.82	13.44	0.58	1088	1056	41000	SM
BLISS-I	44.16	0.12	0.02	2048	7168	5732	ROM
Ring-TESLA*	16 <i>k</i>	0.06	0.03	12288	8192	1568	ROM
TESLA-768	48k	0.65	0.36	3216k	4128k	2336	(Q)ROM
FS-Véron	n/a	n/a	n/a	32	160	129024	ROM
SIDHp751	16.41	7.3k	5.0k	48	768	141312	QROM


Integration

- Smaller but less conservative signature choices exist
- PKE / KEX: Sizes better
- Can your protocol fit a 40KB public key / signature?
- How to deal with immaturity of PQ Problems?
 - Combiners -> pay in size / speed

Conclusion

- A lot of important questions ahead
 - Strengthen confidence
 - Secure implementations
- All solvable but need time & money
- Might have to rethink existing protocols
 - Will not get MUCH smaller

Thank you! Questions?

9-10-2017 PAGE 24