Post-Quantum Cryptography \& Privacy

Andreas Hülsing

ICT-645622

Privacy?

Michel Foucault, Discipline and Punish, 1977

Too abstract?

How to achieve privacy?

DuckDuckGo

Under the hood...

Public-key crypto

- ECC
- RSA
- DSA

Secret-key crypto

- AES
- SHA2
- SHA1

Combination of both needed!

Secret-key cryptography

Main (Secret-key) primitives

- Block- / Stream Cipher
- Encryption of data
- Provides Secrecy

- Authentication of data
- Provides authenticity
- Hash function
- Cryptographic checksum
- Allows efficient comparison

Public-key cryptography

Main (public-key) primitives

- Digital signature
- Proof of authorship
- Provides:
- Authentication
- Non-repudiation

- Public-key encryption / key exchange
- Establishment of commonly known secret key
- Provides secrecy

Applications

- Code signing (Signatures)
- Software updates
- Software distribution

- Mobile code
- Communication security (Signatures, PKE / KEX)
- TLS, SSH, IPSec, ...
- eCommerce, online banking, eGovernment, ...
- Private online communication

Connection security (simplified)

We need secret- and public-key crypto to
achieve privacy!

How to build PKC

Quantum Computing

Quantum Computing

"Quantum computing studies theoretical computation systems (quantum computers) that make direct use of quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data. "
-- Wikipedia

Qubits

- Qubit state: $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$ with $\alpha_{i} \in \mathbb{C}$ such that $\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}=1$
- Ket: $|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}$
- Qubit can be in state $\frac{|0\rangle+|1\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\binom{1}{1}$
- Computing with 0 and 1 at the same time!

Quantum computers are not almighty

- To learn outcome one has to measure.
- Collapses state
- 1 qubit leads 1 classical bit of information
- Randomized process
- Only invertible computation.
- Impossible to clone (copy) quantum state.

The Quantum Threat

Shor's algorithm (1994)

- Quantum computers can do FFT very efficiently
- Can be used to find period of a function
- This can be exploited to factor efficiently (RSA)
- Shor also shows how to solve discrete log efficiently (DSA, DH, ECDSA, ECDH)

Grover's algorithm (1996)

- Quantum computers can search N entry DB in $\Theta(\sqrt{N})$
- Application to symmetric crypto
- Nice: Grover is provably optimal (For random function)
- Double security parameter.

To sum up

- All asymmetric crypto is broken by QC
- No more digital signatures
- No more public key encryption
- No more key exchange
- No secure shopping for tea...

Quantum Cryptography

Why not beat 'em with their own weapons?

- QKD: Quantum Key distribution.
- Based on some nice quantum properties: entanglement \& collapsing measurments
- Information theoretic security (at least in theory) -> Great!
- For sale today!
- So why don't we use this?
- Only short distance, point-to-point connections!
- Internet? No way!
- Longer distances require „trusted-repeaters" ©)
- We all know where this leads...

PQCRYPTO to the rescue

Quantum-secure problems

No provably quantum resistant problems

Credits: Buchmann, Bindel 2015

Conjectured quantum-secure problems

- Solving multivariate quadratic equations (MQproblem)
-> Multivariate Crypto
- Bounded-distance decoding (BDD)
-> Code-based crypto
- Short(est) and close(st) vector problem (SVP, CVP) -> Lattice-based crypto
- Breaking security of symmetric primitives (SHAx-, AES-, Keccak-,... problem)
-> Hash-based signatures / symmetric crypto

MQ-Problem

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ and $\operatorname{MQ}\left(n, m, \mathbb{F}_{q}\right)$ denote the family of vectorial functions $\boldsymbol{F}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$ of degree 2 over \mathbb{F}_{q} :
$\operatorname{MQ}\left(n, m, \mathbb{F}_{q}\right)$

$$
=\left\{\boldsymbol{F}(\boldsymbol{x})=\left(f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x}) \mid f_{s}(\boldsymbol{x})=\sum_{i, j} a_{i, j} x_{i} x_{j}+\sum_{i} b_{i} x_{i}, \quad s \in[1, m]\right\}\right.
$$

The MQ Problem $\operatorname{MQ}(\boldsymbol{F}, \boldsymbol{v})$ is defined as given $\boldsymbol{v} \in \mathbb{F}{ }_{q}^{m}$ find, if any, $\boldsymbol{s} \in \mathbb{F}{ }_{q}^{n}$ such that $\boldsymbol{F}(\boldsymbol{s})=\boldsymbol{v}$.

Decisional version is NP-complete [Garey, Johnson'79]

Multivariate Signatures (trad. approach)

$\mathrm{P}: \mathrm{F}^{\mathrm{n}} \rightarrow \mathrm{F}^{\mathrm{m}}$, easily invertible non-linear
$\mathrm{S}: \mathrm{F}^{\mathrm{n}} \rightarrow \mathrm{F}^{\mathrm{n}}, \mathrm{T}: \mathrm{F}^{\mathrm{m}} \rightarrow \mathrm{F}^{\mathrm{m}}$, affine linear
Public key: $\quad \mathrm{G}=\mathrm{S} \circ \mathrm{P} \circ \mathrm{T}$, hard to invert
Secret Key: \quad S, P,T allows to find G^{-1}

$$
\mathrm{G}^{-1}=\mathrm{T}^{-1}{ }_{\circ} \mathrm{P}^{-1}{ }_{\circ} \mathrm{S}^{-1}
$$

Signing:

$$
\mathrm{s}=\mathrm{T}^{-1}{ }_{\mathrm{o}} \mathrm{P}^{-1} \mathrm{o}^{-1}(\mathrm{~m})
$$

Verifying: $\quad G(s)=? m$

- UOV , Goubin et al., 1999
- Rainbow, Ding, et al. 2005
- pFlash, Cheng, 2007
- Gui, Ding, Petzoldt, 2015

Forging signature: Solve $G(s)-m=0$

Credits: Buchmann, Bindel 2015

Multivariate Cryptography

- Breaking scheme \nRightarrow Solving random MQ-instance
-> NP-complete is a worst-case notion
(there might be - and there are for MQ -- easy instances)
-> Not a random instance
Many broken proposals
-> Oil-and-Vinegar, SFLASH, MQQ-Sig, (Enhanced) TTS, Enhanced STS.
-> Security somewhat unclear
- Only signatures
-> (new proposal for encryption exists but too recent)
- Really large ${ }_{\text {kess }}$
- New proposal with security reduction, small keys, but large signatures.

Coding-based cryptography - BDD

Given: - Linear code $\mathrm{C} \subseteq \mathrm{F}_{2}^{\mathrm{n}}$

- $\mathrm{y} \in \mathrm{F}_{2}^{\mathrm{n}}$
- $t \in \mathbb{N}$

Find: - $\mathrm{x} \in \mathrm{C}: \operatorname{dist}(\mathrm{x}, \mathrm{y}) \leq \mathrm{t}$

BDD is NP-complete (Berlekamp et al. 1978) (Decisional version)

Credits: Buchmann, Bindel 2015

McEliece PKE (1978)

S, G, P matrices over F
G generator matrix for Goppa code

Public key: $\quad G^{\prime}=S \circ G \circ P, t$
Secret Key: P, S, G
Encryption: $\quad \mathrm{c}=\mathrm{mG}^{\prime}+\mathrm{z} \in \mathrm{F}^{\mathrm{n}}$
Decryption: $\quad \mathrm{x}=\mathrm{cP}^{-1}=\mathrm{mSG}+\mathrm{zP}^{-1}$
solve BDD to get $y=m S G$
decode to obtain m

Fast
Large public keys!
500 kBits for 100 bit security Compared to 1776 bit RSA modulus

IND-CPA secure version

Credits: Buchmann, Bindel 2015

Code-based cryptography

- Breaking scheme \nLeftarrow Solving BDD
-> NP-complete is a worst-case notion
(there might be - and there are for BDD -- easy instances)
-> Not a random instance
However, McEliece with binary Goppa codes survived for almost 40 years (similar situation as for e.g. AES)
- Using more compact codes often leads to break
- So far, no practical signature scheme
- Really ${ }^{\text {arge }}{ }_{\text {public keys }}$

Lattice-based cryptography

Basis: $B=\left(b_{1}, b_{2}\right) \in \mathbb{Z}^{2 \times 2} ; b_{1}, b_{2} \in \mathbb{Z}^{2}$
Lattice: $\Lambda(B)=\left\{x=B y \mid y \in \mathbb{Z}^{2}\right\}$

Shortest vector problem (SVP)

(Worst-case) Lattice Problems

- SVP: Find shortest vector in lattice, given random basis. NP-hard (Ajtai'96)
- Approximate SVP (α SVP): Find short vector (norm $<\alpha$ times norm of shortest vector). Hardness depends on α (for α used in crypto not NP-hard).
- CVP: Given random point in underlying vectorspace (e.g. \mathbb{Z}^{n}), find the closest lattice point. (Generalization of SVP, reduction from SVP)
- Approximate CVP (α CVP): Find a „close" lattice point. (Generalization of α SVP)
(Average-case) Lattice Problems Short Integer Solution (SIS)
$\mathbb{Z}_{p}^{n}=\mathrm{n}$-dim. vectors with entries $\bmod p\left(\approx n^{3}\right)$
Goal:
Given $\boldsymbol{A}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{m}}\right) \in \mathbb{Z}_{p}^{n \times m}$
Find ,"small" $\boldsymbol{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathbb{Z}^{m}$ such that

$$
\boldsymbol{A s}=\mathbf{0} \bmod p
$$

Reduction from worst-case α SVP.

Hash function

Set $m>n \log p$ and define $f_{A}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{p}^{n}$ as

$$
f_{\boldsymbol{A}}(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x} \bmod p
$$

Collision-resistance: Given short $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ with $\boldsymbol{A} \boldsymbol{x}_{1}=$ $\boldsymbol{A} \boldsymbol{x}_{2}$ we can find a short solution as

$$
\begin{aligned}
A x_{1}= & A x_{2} \Rightarrow A x_{1}-A x_{2}=0 \\
& A\left(x_{1}-x_{2}\right)=0
\end{aligned}
$$

So, $\boldsymbol{z}=\boldsymbol{x}_{\mathbf{1}}-\boldsymbol{x}_{\mathbf{2}}$ is a solution and it is short as $\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}$ are short.

Lattice-based crypto

- SIS: Allows to construct signature schemes, hash functions, ... , basically minicrypt.
- For more advanced applications: Learning with errors (LWE)
- Allows to build PKE, IBE, FHE,...
- Performance: Sizes can almost reach those of RSA (just small const. factor), really fast (for lattices defined using polynomials).
- BUT: Exact security not well accessed, yet. Especially, no good estimate for quantum computer aided attacks.

Hash-based Signature Schemes

[Mer89]

Post quantum

Only secure hash function

Security well understood

Fast

an Authentication tree with $N=8$.

$$
P_{\text {AGE }} 41 \mathrm{~B}
$$

RSA - DSA - EC-DSA...

Merkle's Hash-based Signatures

Hash-based signatures

- Only signatures
- Minimal security assumptions
- Well understood
- Fast \& compact (2 kB , few ms), but stateful, or
- Stateless, bigger and slower (41kB, several ms).
- Two Internet drafts (drafts for RFCs), one in „RFC Editor queue"

NIST Competition

Post-Quantum Cryptography Project

Documents
Workshops / Timeline
Federal Register Notices
Email Listserve
PQC Project Contact
Archive Information

Post-Quantum Cryptography Standardization

CSRC HOME > GROUPS > CT > POST-QUANTUM CRYPTOGRAPHY PROJECT

POST-QUANTUM CRYPTO PROJECT

NEWS -- December 15, 2016: The National Institute of Standards and Technology (NIST) is now accepting submissions for quantum-resistant public-key cryptographic algorithms. The deadline for submission is November 30, 2017. Please see the Post-Quantum Cryptography Standardization menu at left for the complete submission requirements and evaluation criteria.

In recent years, there has been a substantial amount of research on quantum computers - machines that exploit quantum mechanical phenomena to solve mathematical problems that are difficult or intractable for conventional computers. If large-scale quantum computers are ever built, they will be able to break many of

Resources

- PQ Summer School: https://2017.pqcrypto.org/school/index.html
- NIST PQC Standardization Project: https://csrc.nist.gov/Projects/Post-QuantumCryptography
- Master Math (Selected Areas in Cryptology): https://elo.mastermath.nl/

PQCrypto

Thank you! Questions?

