Post-Quantum Cryptography & Privacy

Andreas Hülsing

Privacy?

... the Panopticon must not be understood as a dream building: it is the diagram of a mechanism of power reduced to its ideal form. Michel Foucault, Discipline and Punish, 1977

Too abstract?

How to achieve privacy?

Under the hood...

Public-key crypto

- ECC
- RSA
- DSA

Secret-key crypto

- AES
- SHA2
- SHA1
- •

Combination of both needed!

Secret-key cryptography

Main (Secret-key) primitives

- Block- / Stream Cipher
 - Encryption of data
 - Provides Secrecy
- Massage authentication code
 - Authentication of data
 - Provides authenticity
- Hash function
 - Cryptographic checksum
 - Allows efficient comparison

Public-key cryptography

Main (public-key) primitives

- Digital signature
 - Proof of authorship
 - Provides:
 - Authentication
 - Non-repudiation

- Public-key encryption / key exchange
 - Establishment of commonly known secret key
 - Provides secrecy

Applications

- Code signing (Signatures)
 - Software updates
 - Software distribution
 - Mobile code

- Communication security (Signatures, PKE / KEX)
 - TLS, SSH, IPSec, ...
 - eCommerce, online banking, eGovernment, ...
 - Private online communication

Connection security (simplified)

We need secret- and public-key crypto to achieve privacy!

How to build PKC

Quantum Computing

Quantum Computing

"Quantum computing studies theoretical computation systems (quantum computers) that make direct use of quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data."

-- Wikipedia

Qubits

• Qubit state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$ with $\alpha_i \in \mathbb{C}$ such that $|\alpha_0|^2 + |\alpha_1|^2 = 1$

• Ket:
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- Qubit can be in state $\frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$
- Computing with 0 and 1 at the same time!

Quantum computers are not almighty

- To learn outcome one has to measure.
 - Collapses state
 - 1 qubit leads 1 classical bit of information
 - Randomized process
- Only invertible computation.
- Impossible to clone (copy) quantum state.

The Quantum Threat

Shor's algorithm (1994)

- Quantum computers can do FFT very efficiently
- Can be used to find period of a function
- This can be exploited to factor efficiently (RSA)
- Shor also shows how to solve discrete log efficiently (DSA, DH, ECDSA, ECDH)

Grover's algorithm (1996)

- Quantum computers can search N entry DB in $\Theta(\sqrt{N})$
- Application to symmetric crypto
- Nice: Grover is provably optimal (For random function)
- Double security parameter.

To sum up

- All asymmetric crypto is broken by QC
 - No more digital signatures
 - No more public key encryption
 - No more key exchange
- No secure shopping for tea...

Quantum Cryptography

Why not beat 'em with their own weapons?

- QKD: Quantum Key distribution.
 - Based on some nice quantum properties: entanglement & collapsing measurments
 - Information theoretic security (at least in theory)
 -> Great!
 - For sale today!
- So why don't we use this?
- Only short distance, point-to-point connections!
 - Internet? No way!
- Longer distances require "trusted-repeaters" 🙂
 - We all know where this leads...

PQCRYPTO to the rescue

Quantum-secure problems

No provably quantum resistant problems

Credits: Buchmann, Bindel 2015

Conjectured quantum-secure problems

- Solving multivariate quadratic equations (MQproblem)
 Multivariate Crypto
- Bounded-distance decoding (BDD)
 -> Code-based crypto
- Short(est) and close(st) vector problem (SVP, CVP)
 -> Lattice-based crypto
- Breaking security of symmetric primitives (SHAx-, AES-, Keccak-,... problem)
 -> Hash-based signatures / symmetric crypto

MQ-Problem

Let $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{F}_q^n$ and $\mathbf{MQ}(n, m, \mathbb{F}_q)$ denote the family of vectorial functions $\mathbf{F}: \mathbb{F}_q^n \to \mathbb{F}_q^m$ of degree 2 over \mathbb{F}_q :

 $MQ(n, m, \mathbb{F}_q)$

$$= \left\{ F(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}) | f_s(\mathbf{x}) = \sum_{i,j} a_{i,j} x_i x_j + \sum_i b_i x_i, \qquad s \in [1,m] \right\}$$

The **MQ** Problem **MQ**(F, v) is defined as given $v \in \mathbb{F}_q^m$ find, if any, $s \in \mathbb{F}_q^n$ such that F(s) = v.

Decisional version is NP-complete [Garey, Johnson'79]

Multivariate Signatures (trad. approach)

Fast P: $F^n \rightarrow F^m$, easily invertible non-linear Large keys: S: $F^n \to F^n$, T: $F^m \to F^m$, affine linear 100 kBit for 100 bit security Public key: $G = S \circ P \circ T$, hard to invert Compared to 1776 bit Secret Key: S, P,T allows to find G^{-1} **RSA** modulus $G^{-1} = T^{-1} \circ P^{-1} \circ S^{-1}$ UOV, Goubin et al., 1999 $s = T^{-1} \circ P^{-1} \circ S^{-1}(m)$ Signing: Rainbow, Ding, et al. 2005 pFlash, Cheng, 2007 $G(s) = {}^{?}m$ Verifying: Gui, Ding, Petzoldt, 2015

Forging signature: Solve G(s) - m = 0

Credits: Buchmann, Bindel 2015

Multivariate Cryptography

- Breaking scheme ⇔ Solving random MQ-instance
 - -> NP-complete is a worst-case notion (there might be – and there are for MQ -- easy instances)
 -> Not a random instance
 Many broken proposals
 -> Oil-and-Vinegar, SFLASH, MQQ-Sig, (Enhanced) TTS, Enhanced STS.
 -> Security somewhat unclear
- Only signatures -> (new proposal for encryption exists but too recent)
- Really large keys
- New proposal with security reduction, small keys, but large signatures.

Coding-based cryptography - BDD

Given: • Linear code $C \subseteq F_2^n$

- $y \in F_2^n$
- t∈ ℕ
- Find: $x \in C$: dist $(x, y) \le t$

BDD is NP-complete (Berlekamp et al. 1978) (Decisional version)

McEliece PKE (1978)

S, G, P matrices over F

G generator matrix for Goppa code

Allows to solve BDD

Public key: $G' = S \circ G \circ P$, t

Secret Key: P, S, G

Encryption:

 $c = mG' + z \in F^n$

Decryption:

 $c = mG' + z \in F^n$

 $\mathbf{x} = \mathbf{c}\mathbf{P}^{-1} = \mathbf{m}\mathbf{S}\mathbf{G} + \mathbf{z}\mathbf{P}^{-1}$

solve BDD to get y = mSG

decode to obtain m

Fast

Large public keys! 500 kBits for 100 bit security Compared to 1776 bit RSA modulus

IND-CPA secure version

Credits: Buchmann, Bindel 2015

Code-based cryptography

- Breaking scheme ⇔ Solving BDD
 - NP-complete is a worst-case notion (there might be – and there are for BDD -- easy instances)
 Not a random instance
 However, McEliece with binary Goppa codes survived for almost 40 years (similar situation as for e.g. AES)
- Using more compact codes often leads to break
- So far, no practical signature scheme
- Really large public keys

Lattice-based cryptography

 b_2

b₁

Basis: $B = (b_1, b_2) \in \mathbb{Z}^{2 \times 2}$; $b_1, b_2 \in \mathbb{Z}^2$ Lattice: $\Lambda(B) = \{x = By \mid y \in \mathbb{Z}^2\}$

Shortest vector problem (SVP)

(Worst-case) Lattice Problems

- **SVP:** Find shortest vector in lattice, given random basis. NP-hard (Ajtai'96)
- Approximate SVP (α SVP): Find short vector (norm < α times norm of shortest vector). Hardness depends on α (for α used in crypto not NP-hard).
- CVP: Given random point in underlying vectorspace (e.g. Zⁿ), find the closest lattice point. (Generalization of SVP, reduction from SVP)
- Approximate CVP (α CVP): Find a "close" lattice point. (Generalization of α SVP)

(Average-case) Lattice Problems Short Integer Solution (SIS)

 $\mathbb{Z}_p^n = n$ -dim. vectors with entries mod $p \ (\approx n^3)$ Goal:

Given $A = (a_1, a_2, ..., a_m) \in \mathbb{Z}_p^{n \times m}$ Find "small" $s = (s_1, ..., s_m) \in \mathbb{Z}^m$ such that

 $As = 0 \mod p$

Reduction from worst-case α SVP.

Hash function

Set $m > n \log p$ and define $f_A: \{0,1\}^m \to \mathbb{Z}_p^n$ as

$$f_A(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x} \bmod p$$

Collision-resistance: Given short x_1 , x_2 with $Ax_1 = Ax_2$ we can find a short solution as

$$Ax_1 = Ax_2 \Rightarrow Ax_1 - Ax_2 = 0$$
$$A(x_1 - x_2) = 0$$

So, $z = x_1 - x_2$ is a solution and it is short as x_1, x_2 are short.

Lattice-based crypto

- SIS: Allows to construct signature schemes, hash functions, ..., basically minicrypt.
- For more advanced applications: Learning with errors (LWE)
 - Allows to build PKE, IBE, FHE,...
- Performance: Sizes can almost reach those of RSA (just small const. factor), really fast (for lattices defined using polynomials).
- BUT: Exact security not well accessed, yet. Especially, no good estimate for quantum computer aided attacks.

Hash-based Signature Schemes

Hash-based signatures

- Only signatures
- Minimal security assumptions
- Well understood
- Fast & compact (2kB, few ms), but stateful, or
- Stateless, bigger and slower (41kB, several ms).
- Two Internet drafts (drafts for RFCs), one in "RFC Editor queue"

NIST Competition

Resources

- PQ Summer School: <u>https://2017.pqcrypto.org/school/index.html</u>
- NIST PQC Standardization Project: <u>https://csrc.nist.gov/Projects/Post-Quantum-Cryptography</u>
- Master Math (Selected Areas in Cryptology): <u>https://elo.mastermath.nl/</u>

Thank you! Questions?

