Post-Quantum Cryptography a talk about problems... problems... problems

Andreas Hülsing TU Eindhoven

The Problem

Public-key cryptography

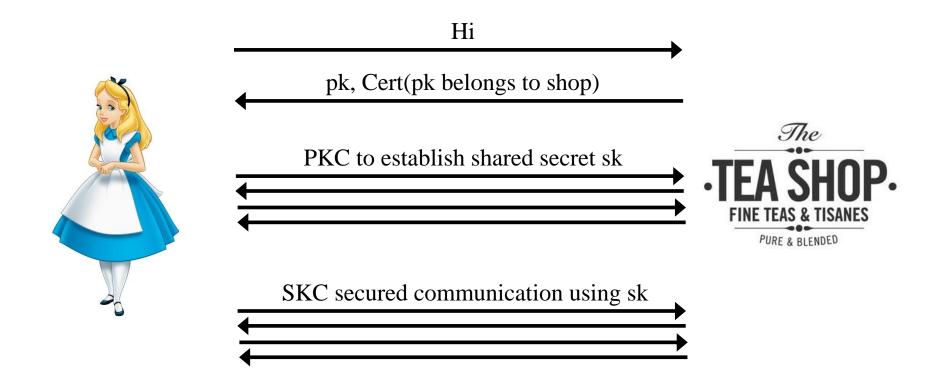
Main (public-key) primitives

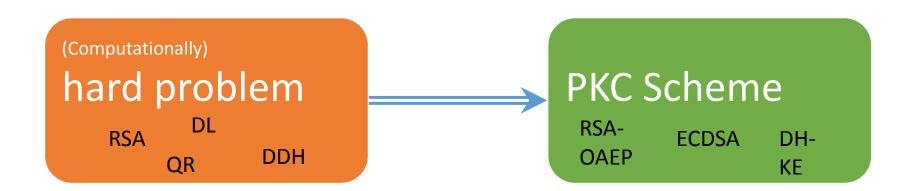
- Digital signature (DSIG)
 - Proof of authorship
 - Provides:
 - Authentication
 - Non-repudiation



- Public-key encryption (PKE) / Key exchange (KEX) / Key encapsulation mechanism (KEM)
 - Establishment of commonly known secret key
 - Provides secrecy

Applications

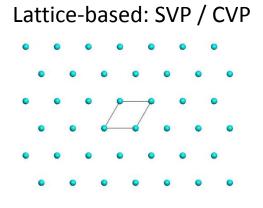

- Code signing (DSIG)
 - Software updates
 - Software distribution
 - Mobile code


- Communication security (DSIG, PKE / KEX / KEM)
 - TLS, SSH, IPSec, ...
 - eCommerce, online banking, eGovernment, ...
 - Private online communication

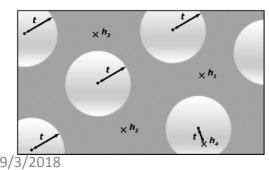
Connection security (simplified)

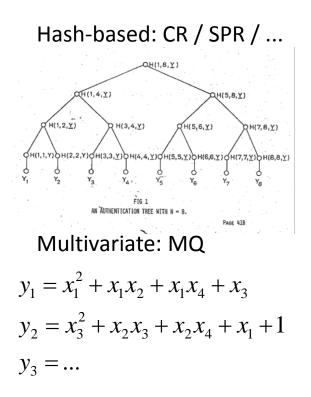
How to build PKC

The problem


- Large (few thousand logical qubits) quantum computers can solve previously used problems (Factoring & DLog)
- All previous public key schemes are broken
- No KEX, KEM, PKE, and DSIG
- Symmetric key primitives generally remain secure!

This is a problem that QKD cannot solve!


But post-quantum cryptography can!


Early post-quantum crypto

"Cryptography based on problems that are conjectured to be hard even for quantum computers."

Code-based: SD



Andreas Hülsing https://huelsing.net

Modern post-quantum crypto

"Users using cryptography on conventional computers facing quantum adversaries"

Adds questions like

- How to argue security?
- Are our security models sound?
- What is the complexity of actual quantum attacks?

The computational complexity approach

- Public key cryptography cannot be information theoretically secure
- We need to base it on hardness of computational problems
- Cryptanalysis needed to determine complexity of solving problems aka breaking systems
 - Needed to select parameters.

Conjectured quantum-hard problems

- Solving multivariate quadratic equations (MQ-problem)
 Multivariate Crypto
- Syndrom decoding problem (SD)
 -> Code-based crypto
- Short(est) and close(st) vector problem (SVP, CVP)
 -> Lattice-based crypto
- Breaking security of symmetric primitives (SHAx-, AES-, Keccak-,... problem)
 -> Hash-based signatures / symmetric crypto
- (Finding isogenies between supersingular elliptic cruves -> SIDH)

NIST Competition

NIST National Institute of S Information Technology Lab	Standards and Technology SEARCH:	Search			
	CONTACT SITE MAP				
Computer Security Division					
Computer Security Resource Center					
CSRC Home About Projects / Research Publications News & Events					
	CSRC HOME > GROUPS > CT > POST-QUANTUM CRYPTOGRAPHY PROJECT				
Post-Quantum Cryptography Project	POST-QUANTUM CRYPTO PROJECT				
Documents	NEWS December 15, 2016: The National Institute of Standards and				
Workshops / Timeline	Technology (NIST) is now accepting submissions for quantum-resistant public-key cryptographic algorithms. The deadline for submission is November 30, 2017.				
Federal Register Notices					
Federal Register Notices Email Listserve	Please see the Post-Quantum Cryptography Standardization menu at left complete submission requirements and evaluation criteria.				

"We see our role as managing a process of achieving community consensus in a transparent and timely manner" NIST's Dustin Moody 2018

Status of the competition

- Nov 2017 Submissions collected
- Dec 2017 Complete & Proper proposals published
 - -> Starts round 1 (of 2 or 3 rounds)
- 2022 2024 Draft standards exist

Submissions (69 complete & proper)

Туре	PKE/KEM	Signature	Signature & PKE/KEM
Lattice	21 (-1 due to merge)	5	
Code-based	18 (-1 withdrawn)	3 (-1 withdrawn)	
Hash-based		3	
Multivariate	2	7	2 (-1 withdrawn)
Braid group		1	
Supersingular Elliptic Curve Isogeny	1		
Satirical submission			1
Other	4 (-2 withdrawn)		

First evaluation results

Submissions

- Submissions generally follow a few previously known theoretic constructions.
- Submissions differ in how the theoretical construction is implemented

Attacks

- 11 attacks on 10 schemes published.
- No "big surprises" (aka efficient solution to one of the underlying hard problems)
- Attacks either break those schemes that are "fundamentally new" or exploit implementation decisions

The computational problems

MQ-Problem

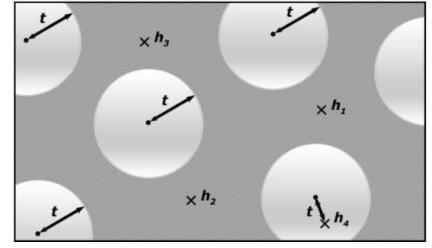
Let $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{F}_q^n$ and $\mathbf{MQ}(n, m, \mathbb{F}_q)$ denote the family of vectorial functions $\mathbf{F} \colon \mathbb{F}_q^n \to \mathbb{F}_q^m$ of degree 2 over \mathbb{F}_q :

$$\mathbf{MQ}(n, m, \mathbb{F}_q) = \left\{ \mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}) \mid f_s(\mathbf{x}) = \sum_{i,j} a_{i,j} x_i x_j + \sum_i b_i x_i \right\}$$

Multivariate Cryptography

- First proposal 1988
- Only signatures -> (new proposal for encryption exists but very recent)
- Cryptanalysis tasks:
 - Hardness of solving random MQ-instance
 - Hardness of solving "special" MQ-instances
- Known quantum attacks:
 - "Quantization" of classical algorithms (Bernstein & Yang '17, Faugère, Horan, Kahrobaei, Kaplan, Kashefi & Perret '17)
 - Cost $\mathcal{O}(2^{cn})$, c = 0.457 for m=n and q=2

Syndrom Decoding Problem


Given a matrix $G \in \mathbb{F}_q^{k \times n}$ of rank k, the set $C \coloneqq \{mG : m \in \mathbb{F}_q^k\}$ is called a linear code with generator matrix G. If $C = \{c \in \mathbb{F}_q^n : Hc^t = 0\}$ we call H the parity check matrix.

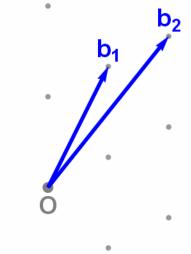
Syndrom Decoding Problem

Given:

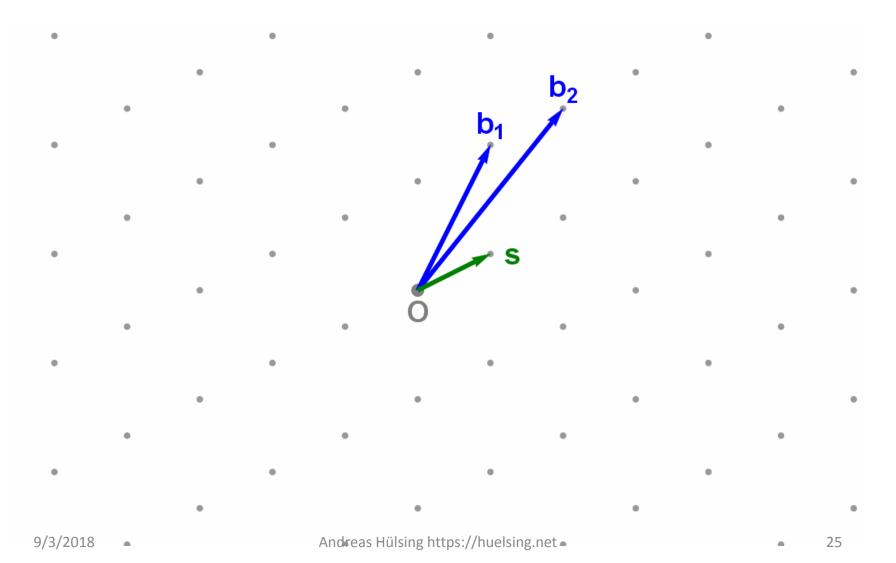
- Linear Code $C \subseteq \mathbb{F}_q^n$,
- Syndrom $s \subseteq \mathbb{F}_q^k$,
- and error bound $b \in \mathbb{N}$

Return:

• $e \in \mathbb{F}_q^n$ of weight $\leq b$ such that $He^t = s$


Decision version is NP-hard (Berlekamp, McEliece & v.Tilborg '78; Barg '94)

Code-based cryptography


- First proposal 1978: McEliece with binary Goppa codes
- Until recently, practical proposals only known for KEM
- Either huge keys or structured codes (QC-MDPC)
- Cryptanalysis tasks:
 - Hardness of solving random SD-instance
 - Hardness of solving SD for specific codes (QC-MDPC, Goppa)
- Known quantum attacks:
 - "Quantization" of classical algorithms (Kachigar & Tillich '17)
 - Cost $\mathcal{O}(2^{cn})$, c = 0.058 worst-case

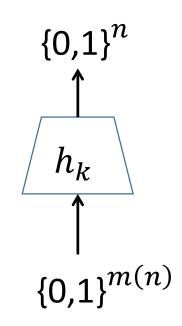
Lattice-based cryptography

Basis: $B = (b_1, b_2) \in \mathbb{Z}^{2 \times 2}$; $b_1, b_2 \in \mathbb{Z}^2$ Lattice: $\Lambda(B) = \{x = By \mid y \in \mathbb{Z}^2\}$

Shortest vector problem (SVP)

(Worst-case) Lattice Problems

- **SVP:** Find shortest vector in lattice, given random basis. NP-hard (Ajtai'96)
- Approximate SVP (α SVP): Find short vector (norm < α times norm of shortest vector). Hardness depends on α (for α used in crypto not NP-hard).
- CVP: Given random point in underlying vectorspace (e.g. Zⁿ), find the closest lattice point. (Generalization of SVP, reduction from SVP)
- Approximate CVP (α CVP): Find a "close" lattice point. (Generalization of α SVP)


Lattice-based crypto

- First proposal GGH (proposed 1995, published 1997) or Ajtai (1996)?
- Signatures & KEM / KEX
- Either huge keys and/or sigs or structured lattices (Ideal / module lattices)
- Cryptanalysis tasks:
 - Hardness of solving α SVP for random lattices
 - Hardness of solving α SVP for structured lattices (Ideal-, Module lattices)
- Known quantum attacks:
 - "Quantization" of classical algorithms (Laarhoven, Mosca & v.d.Pol '15; Aono, Nguyen & Shen '18)
 - Cost $2^{cn+o(n)}$, c = 0.268 (heuristically)

(Hash) function families

•
$$H_n \coloneqq \left\{h_k \colon \left\{0,1\right\}^{m(n)} \to \left\{0,1\right\}^n\right\}$$

- $m(n) \ge n$
- "efficient"

Preimage resistance (PRE)

$$H_n \coloneqq \left\{ h_k \colon \left\{ 0, 1 \right\}^{m(n)} \to \left\{ 0, 1 \right\}^n \right\}$$

$$h_k \stackrel{\$}{\leftarrow} H_n$$

$$x \leftarrow \{0,1\}^{m(n)}$$

$$y_c \leftarrow h_k(x)$$

Success if $h_k(x^*) = y_c$

Collision resistance (CR)

$$H_n \coloneqq \left\{ h_k \colon \{0,1\}^{m(n)} \to \{0,1\}^n \right\}$$

$$h_k \stackrel{\$}{\leftarrow} H_n$$

Success if $h_k(x_1^*) = h_k(x_2^*)$ and $x_1^* \neq x_2^*$

Second-preimage resistance (SPR)

$$H_n \coloneqq \left\{ h_k \colon \left\{ 0, 1 \right\}^{m(n)} \to \left\{ 0, 1 \right\}^n \right\}$$

$$h_k \stackrel{\$}{\underset{\$}{\leftarrow}} H_n$$
$$x_c \stackrel{\$}{\leftarrow} \{0,1\}^{m(n)}$$

Success if $h_k(x_c) = h_k(x^*)$ and $x_c \neq x^*$

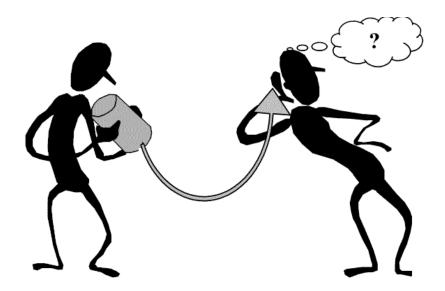
Hash-based signatures

- First proposal Lamport (1979)
- Only signatures
- Fast & compact (2kB, few ms), but stateful, or
- Stateless, bigger and slower (41kB, several ms).
- Cryptanalysis tasks:
 - Solving PRE, SPR, CR,... for random function families
 - Solving PRE, SPR, CR,... for specific hash function (SHA2, SHA3)
- Quantum attacks:
 - Upper & lower bounds for generic attacks (Zhandry '15, Huelsing, Song & Rijneveld '16)
 - PRE, SPR: $\Theta(\frac{q^2}{2n})$, CR: $\Theta(\frac{q^3}{2n})$
 - Costs in more realistic models are worse (e.g. Bernstein & Souza Banegas '17)

Quantum cryptanalysis?

All known algorithms improve conventional algorithms by **less than a square root** factor!

Conclusion


- We need more actual quantum cryptanalysis!
- Skipped due to time: There are a lot of open questions beyond selecting new DSIG / KEM / PKE schemes:
 - What are the right models when proving security?
 - See notion of collapsing [Unruh '16], or the ongoing discussion about indifferentiability [Zhandry '18, Carstens, Ebrahimi, Tabia & Unruh '18]
 - How do we proof security in these models?
 - Real-Ideal: We often do not even know quantum complexity in ideal setting

Resources

- PQ Summer School: https://2017.pqcrypto.org/school/index.html
- NIST PQC Standardization Project: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Thank you! Questions?

