# Machine-checking post-quantum cryptography

Andreas Hülsing Applied & Provable Security Group Eindhoven University of Technology

# How do you ensure that a cryptographic scheme is hard to break?

# Traditional Answer: Cryptanalysis

Have many smart people try to break it.

Does not scale!

- NIST: 64 candidates
- NIST signature on-ramp: 40 candidates
- KpqC: 16 candidates
- China, Russia, ...

Who is supposed to cryptanalyze all of these? What about protocols?



"Bletchley Park House home of the World War Two Codebreakers," by <u>Outwivcamera</u> is licensed under <u>CCBY-SA 4.0</u>.

# The Role of Security Proofs in Cryptography



# The Role of Security Proofs in Cryptography



# The Role of Security Proofs in Cryptography



# Beautiful idea, but who checks the proofs?

- The reviewers?
  - Review load per reviewer at top tier IACR: 16+ papers, 30 pages main body, often 50+ pages with appendix
- The community?
  - eprint 2023:
    - **1703** papers, of which 512 tagged protocols, 264 tagged PKC (ignoring foundations, applications,...)
    - 2919 IACR members in 2023

# Does that work?

Bugs in proofs / proof is wrong.

- XMSS & SPHINCS+:
  - Kudinov, Kiktenko, and Fedorov 2020: Bug in proof of tight security bound for SPHINCS+.
- Dilithium (and many other schemes):
  - Flaw in the HVZK proof step for Fiat-Shamir with aborts. [Barbosa, Barthe, Doczkal, Don, Fehr, Grégoire, Huang, Hülsing, Lee, and Wu. Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium. CRYPTO 2023.]

#### All these are fixed now!

# Does that work?

Bugs in instantiation / proof does not apply:

- XMSS & SPHINCS+:
  - Peickert 2018: Tight-security proof does not apply to instantiations.
  - Antonov 2022: SHA256 instantiation of SPHINCS+ does not achieve full conjectured security on required security properties.
- Kyber:
  - FO-transform used by Kyber is not the one with a security proof
  - Kyber round 1: Proof does not apply when using key compression

• All these are fixed now!

# Proof failure modes

(Taken from Peter Schwabe)

- Proof is wrong
  - Theorem is correct
  - Theorem is also wrong
    - Scheme is still (possibly) secure
    - Scheme is efficiently broken
- Proof doesn't apply to the scheme
  - Proof correct, but theorem "insufficient"
  - Example: attack hides in non-tightness
- Proof (and possibly theorem) too vague
- Theorem and proof correct, but not very useful
  - "A is secure if A is secure"

# How to solve this?



- Effort to formally verify crypto
- Goal: verified PQC ready for deployment
- Three main projects:
  - EasyCrypt proof assistant
  - Jasmin programming language
  - Libjade (PQ-)crypto library
- Core community of  $\approx$  30–40 people
- Discussion forum with >180 people



# The toolchain



https://huelsing.net

# Results (Security proofs)

- Barbosa, Barthe, Fan, Grégoire, Hung, Katz, Strub, Wu, and Zhou. EasyPQC: Verifying Post-Quantum Cryptography. ACM CCS 2021
- Hülsing, Meijers, and Strub. Formal Verification of Saber's Public-Key Encryption Scheme in EasyCrypt. CRYPTO 2022
- Barbosa, Barthe, Doczkal, Don, Fehr, Grégoire, Huang, Hülsing, Lee, and Wu. Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium. CRYPTO 2023
- Barbosa, Dupressoir, Grégoire, Hülsing, Meijers, and Strub. Machine-Checked Security for XMSS as in RFC 8391 and SPHINCS+. CRYPTO 2023



### Impact

- Proof is wrong
  - Theorem is correct
  - Theorem is also wrong
    - Scheme is still (possibly) secure
    - Scheme is efficiently broken
- Proof doesn't apply to the scheme
  - Proof correct, but theorem "insufficient"
  - Example: attack hides in non-tightness
- Proof (and possibly theorem) too vague
- Theorem and proof correct, but not very useful
  - "A is secure if A is secure"

# Results

 Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet, Oliveira, Pacheco, Quaresma, Schwabe, Séré, Strub. Formally verifying Kyber Part I: Implementation Correctness. TCHES, 2023



### Impact

- Proof is wrong
  - Theorem is correct
  - Theorem is also wrong
    - Scheme is still (possibly) secure
    - Scheme is efficiently broken
- Proof doesn't apply to the scheme
  - Proof correct, but theorem "insufficient"
  - Example: attack hides in non-tightness
- Proof (and possibly theorem) too vague
- Theorem and proof correct, but not very useful
  - "A is secure if A is secure"

### Impact

- Proof is wrong
  - Theorem is correct
  - Theorem is also wrong
    - Scheme is still (possibly) secure
    - Scheme is efficiently broken
- Proof doesn't apply to the scheme
  - Proof correct, but theorem "insufficient"
  - Example: attack hides in non-tightness
- Proof (and possibly theorem) too vague
- Theorem and proof correct, but not very useful
  "A is secure if A is secure"



# What I did not talk about

- Implementation security (Jasmin part)
  - Side-Channel Attack Resistance
  - Speculative Execution Attack Mitigation
  - Memory Safety
  - ...
  - See CHES 2023 invited talk by Peter Schwabe <u>https://youtu.be/7uIabAwB92M?si=gdGWEwXIz9XGZUhm&t=944</u>
- Other tools
  - Barbosa, Barthe, Bhargavan, Blanchet, Cremers, Liao, Parno. SoK: Computer-Aided Cryptography. S&P '21 <a href="https://eprint.iacr.org/2019/1393">https://eprint.iacr.org/2019/1393</a>

# Why does NIST not require machine-checked proofs for the signature round?

Results are great but

- Full workflow for Kyber took more than 3 years of many, many people! (Still not fully published!)
- Tools are "Expert Tools"
- New proofs often need help of tool developer
- Little automation
- Little integration with higher level tools (e.g., for protocols)

# Summary



- We have the tools, we can achieve great results
- Verifying proofs is still research
- Usability still needs improvement
- There are many different tools for different use-cases
- We are working on a fully verified PQC library!
- Join the Formosa project (<u>https://formosa-crypto.org/</u>)