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PQ Signatures

• Signatures vs KEM: Should be easier … it isn't...

• Approaches:
1. Hash & Sign

• Full Domain Hash (FDH) with Trapdoor OWP: RSA-PSS, MAYO, UOV,...

• FDH with Preimage-sampleable TDF: Falcon

• Hash-based signatures

2. Signatures from identification:
• Fiat-Shamir (FS): (EC)DSA, Schnorr, …

• FS with aborts: Dilithium

• FS + MPC in the Head (MPCitH): Picnic, Biscuit, MIRA, MiRitH, MQOM, PERK, RYDE, 
SDitH, AIMer, ...
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Syndrome Decoding in the Head (FJR22)

• Code-based signature scheme using MPCitH

• Beats all previous code-based signatures

• Uses unstructured
SD problem!

Source:
Thibauld Feneuil, Antoine Joux, and 
Matthieu Rivain.
"Syndrome Decoding in the Head: 
Shorter Signatures from Zero-
Knowledge Proofs". Crypto'22
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OWF

• AES (FEAST)

• LowMC (Picnic)

• AIM (AIMer)

• Polynomial arithmetic & evaluation (SDitH)

• MQ equation system (Biscuit)

Low multiplicative depth is an advantage!

Fx y

OWF
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(secure) Multi-Party Computation

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

MPC
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MPC

Allows N parties P1, … ,PN with inputs x1, … , xN to jointly compute a 
function F(x1, … , xN) = y such that

• all parties learn the outcome y

• but nothing beyond that

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

MPC
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Example: Price negotiations

Buyer & Seller compute if they can agree on price X

• Logical AND of "willingness"

• If you do not agree, you do not learn the other party's decision!

• Prevents pushing up / down to limit of other party

https://huelsing.net 9



MPC

Allows N parties P1, … ,PN with inputs x1, … , xN to jointly compute a 
function F(x1, … , xN) = y such that

• all parties learn the outcome y

• but nothing beyond that

We additionally need:

• Correctness: If all parties are honest, the result is correct

• N-1 private: If N-1 parties collaborate, they can still not learn 
anything about the input of the last party beyond what can be 
derived from F(x1, … , xN) = y

• Broadcast communication: All messages are broadcasted

https://huelsing.net 10



(additive) Secret Sharing Scheme (SSS)

Split x = [x]1 + [x]2 + … + [x]N with secret shares [x]i in Fq

• Given all but one share x is information theoretically hidden!

https://huelsing.net 11



MPC for additive SSS

Split x = [x]1 + [x]2 + … + [x]N with secret shares [x]i in Fq

Party i holds share [x]i of value x.

Operations:

• Adding shared values ([x] + [y]): Parties locally add shares
 Σ([x]i+[y]i) = Σ[x]i+ Σ[y]i = x+y

• Adding constant ([x] + c): P1 computes [x]1 + c, all others do nothing
[x]1 + c + [x]2 + … + [x]N = Σ[x]i + c = x + c

• Multiplication by constant ([x] · c): All parties locally compute [x]i · c
[x]1 · c + [x]2 · c + … + [x]N · c = ([x]1 + [x]2 + … + [x]N) · c = x · c
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MPC for additive SSS

Split x = [x]1 + [x]2 + … + [x]N with secret shares [x]i in Fq

Party i holds share [x]i of value x.

Operations:

• Adding shared values ([x] + [y]): Parties locally add shares
 Σ([x]i+[y]i) = Σ[x]i+ Σ[y]i = x+y

• Adding constant ([x] + c): P1 computes [x]1 + c, all others do nothing
[x]1 + c + [x]2 + … + [x]N = Σ[x]i + c = x + c

• Multiplication by constant ([x] · c): All parties locally compute [x]i · c
[x]1 · c + [x]2 · c + … + [x]N · c = ([x]1 + [x]2 + … + [x]N) · c = x · c

Multiplication of shared values?https://huelsing.net 13



Share multiplication

• Conventional:
• (Katz, Kolesnikov, Wang. "Improved non-interactive zero knowledge with applications to post-quantum signatures". 

CCS 2018)

• All parties know one share of both inputs
• After protocol, all parties know a share of the output

• Modern:
• (Lindell, Nof. "A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an 

honest-majority". CCS 2017)

• (Baum, Nof. "Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to Lattice-
Based Cryptography". PKC 2020)

• All parties know a share of both inputs and the output
• Protocol proves that output is a sharing of product of input

https://huelsing.net 14



Verifying multiplication

Parties need random triple [a], [b], [c], with ab = c, 
to verify [x], [y], [z], with xy = z

• Take random element e in Fq

• Parties locally set [α] = e[x] + [a] and [β] = [y] + [b]

• Parties broadcast [α] and [β] shares to open α and β

• Parties locally set [v] = e[z] − [c] + α · [b] + β · [a] − α · β  (note that 
last summand is only subtracted by P1)

• Parties broadcast [v] shares to open v and accept if v = 0.

https://huelsing.net 15



Verifying multiplication – Correctness

• v = e · z − c + α · b + β · a − α · β

   = e · xy − ab + (e · x + a)b + (y + b)a − (e · x + a)(y + b)

   = exy – ab + exb + ab + ya + ba − exy − exb − ay – ab = 0

https://huelsing.net 16



Verifying multiplication – Soundness

• v = e · z − c + α · b + β · a − α · β

   = e · xy − ab + (e · x + a)b + (y + b)a − (e · x + a)(y + b)

   = exy – ab + exb + ab + ya + ba − exy − exb − ay – ab = 0

https://huelsing.net 17



Verifying multiplication – Soundness

• Let z = xy + dz and c = ab + dc

• v = e · z − c + α · b + β · a − α · β

   = e · xy + edz − ab − dc + (e · x + a)b + (y + b)a − (e · x + a)(y + b)

   = 0 + edz − dc

https://huelsing.net 18



Verifying multiplication – Soundness

Claim: If dz ≠ 0 or dc ≠ 0 then v = 0 with probability at most 1 / |Fq|

Proof: Recall v = edz − dc

• Case dz = 0 & dc ≠ 0:

v = edz − dc = - dc ≠ 0

https://huelsing.net 19



Verifying multiplication – Soundness

Claim: If dz ≠ 0 or dc ≠ 0 then v = 0 with probability at most 1 / |Fq|

Proof: Recall v = edz − dc

• Case dz = 0 & dc ≠ 0:

v = edz − dc = - dc ≠ 0

• Case dz ≠ 0 & dc ≠ 0:

v = 0  <=>  dc = edz  <=>  dcdz
-1= e  (prob 1 / |Fq|)
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Verifying multiplication – Soundness

Claim: If dz ≠ 0 or dc ≠ 0 then v = 0 with probability at most 1 / |Fq|

Proof: Recall v = edz − dc

• Case dz = 0 & dc ≠ 0:

v = edz − dc = - dc ≠ 0

• Case dz ≠ 0 & dc ≠ 0:

v = 0  <=>  dc = edz  <=>  dcdz
-1= e  (prob 1 / |Fq|)

• Case dz ≠ 0 & dc = 0:

v = edz − dc = edz   => v = 0 iff e = 0  (prob 1 / |Fq|)
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Function to circuit - Examples

Evaluating shared polynomial [P] = Σ [pi] x
i at public point r:

• Locally: [P](r) = Σ [pi] r
i = [y]

• No interaction

• Single secret shared value as outcome

Evaluating product of shared polynomials [P], [S] at public point r:

• Requires knowledge of result [z]

• Locally: [P](r) = Σ [pi] r
i = [y],   [S](r) = Σ [si] r

i = [x]

• Run verify for [x]·[y] = [z]
• Single broadcast interaction + final opening

https://huelsing.net 22



Function to circuit: SDitH (FJR'22)

• Turn Syndrome Decoding function into MPC

https://huelsing.net 23



Function to circuit: SDitH (FJR'22)

• Turn Syndrome Decoding function into MPC

• Advantage: Linear function.
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Function to circuit: SDitH (FJR'22)

• Turn Syndrome Decoding function into MPC

• Advantage: Linear function.

• Disadvantage: Weight check.
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SDitH – Implicit Equation Check

• Use H in standard form: H = (H' | Im-k)

• Can write x = (xA | xB)  with  y = H'xA + xB

• Define sk = xA

• Compute x via xB = y – H'xA

   => guarantees x fulfills y = Hx

https://huelsing.net 26



SDitH – Weight check

• Compute x from xA, H, and y

• Derive a polynomial S from x

• Generate polys Q, P, and public F such that

SQ – PF = 0  if wt(x)  

• Select t random points ri and verify that

S(ri)Q(ri) = PF(ri) for 0 < i ≤ t.

https://huelsing.net 27



SDitH – MPC circuit

• Compute [x] from [xA], H, and y  (only linear ops)

• Derive share of polynomial [S] from [x] (only linear ops)

• Generate secret shared polys [Q], [P], and public F such that

[S][Q] – [P]F = 0  if wt(x)  

• Get t random points ri, t random masks ei, and run verification for

[S](ri)[Q](ri) = [P]F(ri) using ei

   for 0 < i ≤ t.

https://huelsing.net 28



Identification Schemes

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

IDS
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Identification Schemes (IDS) /
Zero-knowledge proofs (ZKP)
• Invented by Shafi Goldwasser, Silvio Micali and Charles Rackoff in 

1985

• Interactive proof systems

• Prove knowledge of a secret without revealing any information about 
the secret

• [For people that like classifications: The IDS we discuss are actually 
Honest-Verifier Zero-Knowledge Arguments of Knowledge]
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Identification schemes (3-round, public coin)

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

Also called a "Sigma Protocol"
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The case of Sudoku

• A: I have a nice Sudoku for you

• B: You are sure this is solvable?

• A: Sure!

• B: Prove it!

• A: Ok...

5  3  4     6  7  8     9  1  2
6  7  2     1  9  5     3  4  8
1  9  8     3  4  2     5  6  7

8  5  9     7  6  1     4  2  3
4  2  6     8  5  3     7  9  1
7  1  3     9  2  4     8  5  6

9  6  1     5  3  7     2  8  4
2  8  7     4  1  9     6  3  5
3  4  5     2  8  6     1  7  9
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The case of Sudoku

• So how can Alice prove that a solution exists without making the 
Sudoku easier (a.k.a. leaking information)?
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The case of Sudoku

• Apply random permutation to solution:
1 2 3 4 5 6 7 8 9

3 2 7 1 6 9 4 5 8

5  3  4     6  7  8     9  1  2
6  7  2     1  9  5     3  4  8
1  9  8     3  4  2     5  6  7

8  5  9     7  6  1     4  2  3
4  2  6     8  5  3     7  9  1
7  1  3     9  2  4     8  5  6

9  6  1     5  3  7     2  8  4
2  8  7     4  1  9     6  3  5
3  4  5     2  8  6     1  7  9

6  7  1     9  4  5     8  3  2
9  4  2     3  8  6     7  1  5
3  8  5     7  1  2     6  9  4

5  6  8     4  9  3     1  2  7
1  2  9     5  6  7     4  8  3
4  3  7     8  2  1     5  6  9

8  9  3     6  7  4     2  5  1
2  5  4     1  3  8     9  7  6
7  1  6     2  5  9     3  4  8
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The case of Sudoku

• Prepare scratch card:

6  7  1     9  4  5     8  3  2
9  4  2     3  8  6     7  1  5
3  8  5     7  1  2     6  9  4

5  6  8     4  9  3     1  2  7
1  2  9     5  6  7     4  8  3
4  3  7     8  2  1     5  6  9

8  9  3     6  7  4     2  5  1
2  5  4     1  3  8     9  7  6
7  1  6     2  5  9     3  4  8
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The case of Sudoku

Show scratch card to Bob and allow him to ask Alice to do one out of 
the following:

• Scratch off a row

• Scratch off a column

• Scratch off a square

• Scratch off original Sudoku

6  7  1     9  4  5     8  3  2
9  4  2     3  8  6     7  1  5
3  8  5     7  1  2     6  9  4

5  6  8     4  9  3     1  2  7
1  2  9     5  6  7     4  8  3
4  3  7     8  2  1     5  6  9

8  9  3     6  7  4     2  5  1
2  5  4     1  3  8     9  7  6
7  1  6     2  5  9     3  4  8
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The case of Sudoku

What does Bob gain? (Soundness)

• If scratching reveals inconsistency:
Alice cheated!

• If scratching reveals consistent values:
Alice might have cheated...

But Bob gains some confidence in Alice 
knowing a solution.
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The case of Sudoku

• Bob choose from 28 possible “challenges“

• If Alice is cheating she gets caught with prob.  ≥
1

28
 

• Cheating Alice has chance of ≤
27

28
 to succeed

• Repeating protocol 𝑛 times means Alice’s 
cheating probability goes down to 

27

28

𝑛

≈
1

2

0.05𝑛

• When 𝑛 =  2500, Alice caught with 0.99 probability.
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The case of Sudoku

(Honest-Verifier) Zero-knowledge:

• We want to show that (honest) Bob does not learn anything about 
the secret (i.e., the Sudoku solution)

• We will prove: Everything he learns, he could have generated himself.

• Can be proved showing that Bob (without knowing the secret) could 
have generated valid protocol transcripts that are indistinguishable 
from those obtained by communicating with Alice. ?

https://huelsing.net 39



The case of Sudoku

Proving zero-knowledge:

• Trick: When Bob generates transcripts, he can first select the challenge, 
then produce the scratch card!

• For challenge row, column, or square: Just put random permutation of 
1...9. 

• For challenge original Sudoku: Just put random permutation of the used 
numbers.

⟹ Follows exactly same distribution as what Alice would have put there!
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The case of Sudoku - Implications

Yato 2003: 
„Solvability of n x n Sudoku is NP-complete“

• We can use this proof for any other problem in NP

• Just transform problem instance into Sudoku instance and run ZKP for 
that instance.

https://huelsing.net 41



Identification schemes (3-round, public coin)

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

Also called a "Sigma Protocol"
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Security Properties

• Soundness: A prover that does not know the secret will get caught with
        high probability (1 – e) where e is called soundness error

• Special soundness: There exists an efficient extractor E that given two
        transcripts with same w but different c, extracts sk.

• Honest verifier zero-knowledge (HVZK): There exists an efficient simulator S
        that, given only the public key, outputs transcripts which are
        indistinguishable from transcripts of honest protocol runs
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Identification schemes (5-round, public coin)

Prover P (sk) Verifier V (pk)

w

c1

z1

w <- Commit(sk)

c1 <-R CSpace1

z1 <- Response(sk,w,c1)

b <- Verify(pk,w,c1,z1,c2,z2)

c2

z

c2 <-R CSpace2

z2 <- Response(sk,w,c1,z1,c2)
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More notes on IDS

• We can have 2n+1 round IDS for n ≥ 1

• We usually require that w has high entropy (hard to predict)

• Commitment-recoverable IDS:
• There exist function Recv(c, z) -> w

• We later need negligible soundness error
• Achieved via parallel composition
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MPC in the Head
Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. 
“Zero-knowledge from secure multiparty computation”. STOC'07

46

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

MPC in the Head

MPC

IDS
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MPCitH for PQ-identification
(Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-knowledge from secure multiparty computation”. STOC'07)

Given OWF F: X -> Y

Create identification scheme IDS that proves knowledge of x such that

F(x) = y

for given y in (honest-verifier) zero-knowledge.

sk = x, pk = y[, F]

https://huelsing.net 47



High-level idea

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit([x]), 

c <-R {1, … , 5}

z <- Pi forall i ≠ c
Check consistency of all opened parties & 
verify result

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)
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Security  - Soundness

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit([x]), 

c <-R {1, … , 5}

z <- Pi forall i ≠ c

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

Check consistency of all opened parties & 
verify result
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Security  - Soundness

Prover P (sk) Verifier V (pk)

w

c = 4

z

w <- Commit([x]), 

c <-R {1, … , 5}

z <- Pi for i ≠ 4

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

Check consistency of all opened parties & 
verify result
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Security  - Soundness

Prover P (sk) Verifier V (pk)

w

c ≠ 4

z

w <- Commit([x]), 

c <-R {1, … , 5}

z <- Pi forall i ≠ c

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

Check consistency of all opened parties & 
verify result
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Security  - Soundness

Soundness

• Only if c = iA, A will go undetected!

• Soundness error = 1 / N for N parties

Special soundness:

• Valid openings for c1 ≠ c2 reveal all Pi

• => Can recombine [x]
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Security  - HVZK

• Simulator samples random c first

• Generates Pi, i ≠ c, honestly, with random inputs

• Choses communication of Pc such that result is correct

• Computes all other parts following protocol
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Real life...

• We need the random e for multiplication check! 
(and for SDitH also the points r)

• Add a round trip ...
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Commit

• Share secret [x], generate required number (say t) of multiplication 
triples ([a],[b],[c])i

• Commit to all the shares of one party together.

• Send commitments to V
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Challenge 1

• Send t random values ei for multiplication verification
(SDitH: Also t random points ri to evaluate polynomials on)

https://huelsing.net 56



Response 1

• Run MPC protocol using commited shares and ei

• Assemble and send communication of all multiplication verifications
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Challenge 2

• Send random c within {1, … , N}

https://huelsing.net 58



Response 2

• Send all shares of each party Pi, i ≠ c

https://huelsing.net 59



Verify

• Run MPC protocol with "opened parties" using communications of 
unopened party

• Check that all communications are consistent

• Check that final result is correct 
(usually, C is built such that result is 0)
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Impact on security

• HVZK: None – just sample all challenges in advance

• Soundness: Two ways of cheating -> guessing an e and manipulating 
the multiplication test or guessing the second challenge.

• Soundness error becomes 1 / |Fq| + 1 / N
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Optimizations

• Generate secret shares using PRG, e.g.:
x = [x]1 + [x]2 + … + [x]N + Δ for [x]i = PRG(si) and Δ = x - Σ[x]I

• requires to send the Δ in first communication!

• Only need to commit to and later open si which are shorter than [x]i

• Generate si using TreePRG
• Allows to open all but one leaf publishing log N seeds in place of N!

• Hash commitment message and send unopened commitments in last 
message: w' = H(w)
• Commitment-recoverable IDS

• MUCH shorter w, only slightly longer z
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Hypercube verification

Carlos Aguilar-Melchor, Nicolas Gama, 
James Howe, Andreas Hülsing, David 
Joseph, and Dongze Yue

"The Return of the SDitH". 
EUROCRYPT'23
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Fiat-Shamir

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

IDS

SK

Sign Vrfy

PK /

DSig

Fiat-Shamir
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Fiat-Shamir Signatures

Sign (sk,m)

1. w <- P.commit(sk)

2. c <- hash(pk, w, m)

3. z <- P.response(sk, w, c)

4. Return sig = (w, c, z)

Verify (pk, m, sig)

1. c <- hash(pk, w, m)

2. b <- V.verify(pk, w, c, z)
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Why is this secure?

• HVZK -> Forger does not learn anything about the secret (or how to sign a 
different message) from seeing signatures on chosen messages
• Proof idea: (Q)ROM proof.
• Answer queries by running HVZK simulator
• Program RO to make them consistent (set c <- H(w,m))

• Soundness -> Cannot do better than guessing the challenge per hash query 
/ finding a suitable preimage for given challenge
• For special case of 3-round commit & open IDS with special soundness doable in 

QROM, otherwise complicated (massive loss, hard proof)
• If the adversary has higher success probability than the soundness error, it must be able to 

answer for more than one challenge.
• All openings must be sound
• Implementing the commitment using a random oracle, we can open all commitments using 

the random oracle table -> can generate two valid transcripts for different c & extract
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SDitH in the QROM
(Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue. SDitH in the QROM. Asiacrypt'23)

• Can turn SDitH IDS into 3 round IDS replacing first challenge by hash 
of first message (FS but easier proof -> search problem)

• Get a scheme with query-bounded special soundness

• Apply FS for 3-round commit & open IDS in QROM
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Summary

Fx y

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

x = [x]1 + [x]2 + … + [x]N

C([x]1, [x]2, …, [x]N) = F(x)

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

MPC in the Head

OWF MPC

IDS

SK

Sign Vrfy

PK /

DSig

Fiat-Shamir
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Conclusion

• MPCitH allows to build signature scheme from OWF

• Works best for functions with mostly linear steps

• Several nice optimizations exist

• Quite competitive:
• small sk,

• small pk,

• medium sigs,

• fast

• allows for 
online / offline sigs

(Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue. SDitH in the QROM. Asiacrypt'23)
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