
Signatures from identification,
MPCitH, and more

Andreas Hülsing
Eindhoven University of Technology & SandboxAQ

PQ Signatures

• Signatures vs KEM: Should be easier … it isn't...

• Approaches:
1. Hash & Sign

• Full Domain Hash (FDH) with Trapdoor OWP: RSA-PSS, MAYO, UOV,...

• FDH with Preimage-sampleable TDF: Falcon

• Hash-based signatures

2. Signatures from identification:
• Fiat-Shamir (FS): (EC)DSA, Schnorr, …

• FS with aborts: Dilithium

• FS + MPC in the Head (MPCitH): Picnic, Biscuit, MIRA, MiRitH, MQOM, PERK, RYDE,
SDitH, AIMer, ...

https://huelsing.net 2

Syndrome Decoding in the Head (FJR22)

• Code-based signature scheme using MPCitH

• Beats all previous code-based signatures

• Uses unstructured
SD problem!

Source:
Thibauld Feneuil, Antoine Joux, and
Matthieu Rivain.
"Syndrome Decoding in the Head:
Shorter Signatures from Zero-
Knowledge Proofs". Crypto'22

https://huelsing.net 3

Outline

Fx y

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

x = [x]1 + [x]2 + … + [x]N

C([x]1, [x]2, …, [x]N) = F(x)

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

MPC in the Head

OWF MPC

IDS

SK

Sign Vrfy

PK /

DSig

Fiat-Shamir

https://huelsing.net 4

Outline

Fx y

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

x = [x]1 + [x]2 + … + [x]N

C([x]1, [x]2, …, [x]N) = F(x)

OWF MPC

IDS

SK

Sign Vrfy

PK /

DSig

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

MPC in the Head

Fiat-Shamir

https://huelsing.net 5

OWF

• AES (FEAST)

• LowMC (Picnic)

• AIM (AIMer)

• Polynomial arithmetic & evaluation (SDitH)

• MQ equation system (Biscuit)

Low multiplicative depth is an advantage!

Fx y

OWF

https://huelsing.net 6

(secure) Multi-Party Computation

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

MPC

https://huelsing.net 7

MPC

Allows N parties P1, … ,PN with inputs x1, … , xN to jointly compute a
function F(x1, … , xN) = y such that

• all parties learn the outcome y

• but nothing beyond that

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

MPC

https://huelsing.net 8

Example: Price negotiations

Buyer & Seller compute if they can agree on price X

• Logical AND of "willingness"

• If you do not agree, you do not learn the other party's decision!

• Prevents pushing up / down to limit of other party

https://huelsing.net 9

MPC

Allows N parties P1, … ,PN with inputs x1, … , xN to jointly compute a
function F(x1, … , xN) = y such that

• all parties learn the outcome y

• but nothing beyond that

We additionally need:

• Correctness: If all parties are honest, the result is correct

• N-1 private: If N-1 parties collaborate, they can still not learn
anything about the input of the last party beyond what can be
derived from F(x1, … , xN) = y

• Broadcast communication: All messages are broadcasted

https://huelsing.net 10

(additive) Secret Sharing Scheme (SSS)

Split x = [x]1 + [x]2 + … + [x]N with secret shares [x]i in Fq

• Given all but one share x is information theoretically hidden!

https://huelsing.net 11

MPC for additive SSS

Split x = [x]1 + [x]2 + … + [x]N with secret shares [x]i in Fq

Party i holds share [x]i of value x.

Operations:

• Adding shared values ([x] + [y]): Parties locally add shares
 Σ([x]i+[y]i) = Σ[x]i+ Σ[y]i = x+y

• Adding constant ([x] + c): P1 computes [x]1 + c, all others do nothing
[x]1 + c + [x]2 + … + [x]N = Σ[x]i + c = x + c

• Multiplication by constant ([x] · c): All parties locally compute [x]i · c
[x]1 · c + [x]2 · c + … + [x]N · c = ([x]1 + [x]2 + … + [x]N) · c = x · c

https://huelsing.net 12

MPC for additive SSS

Split x = [x]1 + [x]2 + … + [x]N with secret shares [x]i in Fq

Party i holds share [x]i of value x.

Operations:

• Adding shared values ([x] + [y]): Parties locally add shares
 Σ([x]i+[y]i) = Σ[x]i+ Σ[y]i = x+y

• Adding constant ([x] + c): P1 computes [x]1 + c, all others do nothing
[x]1 + c + [x]2 + … + [x]N = Σ[x]i + c = x + c

• Multiplication by constant ([x] · c): All parties locally compute [x]i · c
[x]1 · c + [x]2 · c + … + [x]N · c = ([x]1 + [x]2 + … + [x]N) · c = x · c

Multiplication of shared values?https://huelsing.net 13

Share multiplication

• Conventional:
• (Katz, Kolesnikov, Wang. "Improved non-interactive zero knowledge with applications to post-quantum signatures".

CCS 2018)

• All parties know one share of both inputs
• After protocol, all parties know a share of the output

• Modern:
• (Lindell, Nof. "A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an

honest-majority". CCS 2017)

• (Baum, Nof. "Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to Lattice-
Based Cryptography". PKC 2020)

• All parties know a share of both inputs and the output
• Protocol proves that output is a sharing of product of input

https://huelsing.net 14

Verifying multiplication

Parties need random triple [a], [b], [c], with ab = c,
to verify [x], [y], [z], with xy = z

• Take random element e in Fq

• Parties locally set [α] = e[x] + [a] and [β] = [y] + [b]

• Parties broadcast [α] and [β] shares to open α and β

• Parties locally set [v] = e[z] − [c] + α · [b] + β · [a] − α · β (note that
last summand is only subtracted by P1)

• Parties broadcast [v] shares to open v and accept if v = 0.

https://huelsing.net 15

Verifying multiplication – Correctness

• v = e · z − c + α · b + β · a − α · β

 = e · xy − ab + (e · x + a)b + (y + b)a − (e · x + a)(y + b)

 = exy – ab + exb + ab + ya + ba − exy − exb − ay – ab = 0

https://huelsing.net 16

Verifying multiplication – Soundness

• v = e · z − c + α · b + β · a − α · β

 = e · xy − ab + (e · x + a)b + (y + b)a − (e · x + a)(y + b)

 = exy – ab + exb + ab + ya + ba − exy − exb − ay – ab = 0

https://huelsing.net 17

Verifying multiplication – Soundness

• Let z = xy + dz and c = ab + dc

• v = e · z − c + α · b + β · a − α · β

 = e · xy + edz − ab − dc + (e · x + a)b + (y + b)a − (e · x + a)(y + b)

 = 0 + edz − dc

https://huelsing.net 18

Verifying multiplication – Soundness

Claim: If dz ≠ 0 or dc ≠ 0 then v = 0 with probability at most 1 / |Fq|

Proof: Recall v = edz − dc

• Case dz = 0 & dc ≠ 0:

v = edz − dc = - dc ≠ 0

https://huelsing.net 19

Verifying multiplication – Soundness

Claim: If dz ≠ 0 or dc ≠ 0 then v = 0 with probability at most 1 / |Fq|

Proof: Recall v = edz − dc

• Case dz = 0 & dc ≠ 0:

v = edz − dc = - dc ≠ 0

• Case dz ≠ 0 & dc ≠ 0:

v = 0 <=> dc = edz <=> dcdz
-1= e (prob 1 / |Fq|)

https://huelsing.net 20

Verifying multiplication – Soundness

Claim: If dz ≠ 0 or dc ≠ 0 then v = 0 with probability at most 1 / |Fq|

Proof: Recall v = edz − dc

• Case dz = 0 & dc ≠ 0:

v = edz − dc = - dc ≠ 0

• Case dz ≠ 0 & dc ≠ 0:

v = 0 <=> dc = edz <=> dcdz
-1= e (prob 1 / |Fq|)

• Case dz ≠ 0 & dc = 0:

v = edz − dc = edz => v = 0 iff e = 0 (prob 1 / |Fq|)

https://huelsing.net 21

Function to circuit - Examples

Evaluating shared polynomial [P] = Σ [pi] x
i at public point r:

• Locally: [P](r) = Σ [pi] r
i = [y]

• No interaction

• Single secret shared value as outcome

Evaluating product of shared polynomials [P], [S] at public point r:

• Requires knowledge of result [z]

• Locally: [P](r) = Σ [pi] r
i = [y], [S](r) = Σ [si] r

i = [x]

• Run verify for [x]·[y] = [z]
• Single broadcast interaction + final opening

https://huelsing.net 22

Function to circuit: SDitH (FJR'22)

• Turn Syndrome Decoding function into MPC

https://huelsing.net 23

Function to circuit: SDitH (FJR'22)

• Turn Syndrome Decoding function into MPC

• Advantage: Linear function.

https://huelsing.net 24

Function to circuit: SDitH (FJR'22)

• Turn Syndrome Decoding function into MPC

• Advantage: Linear function.

• Disadvantage: Weight check.

https://huelsing.net 25

SDitH – Implicit Equation Check

• Use H in standard form: H = (H' | Im-k)

• Can write x = (xA | xB) with y = H'xA + xB

• Define sk = xA

• Compute x via xB = y – H'xA

 => guarantees x fulfills y = Hx

https://huelsing.net 26

SDitH – Weight check

• Compute x from xA, H, and y

• Derive a polynomial S from x

• Generate polys Q, P, and public F such that

SQ – PF = 0 if wt(x)

• Select t random points ri and verify that

S(ri)Q(ri) = PF(ri) for 0 < i ≤ t.

https://huelsing.net 27

SDitH – MPC circuit

• Compute [x] from [xA], H, and y (only linear ops)

• Derive share of polynomial [S] from [x] (only linear ops)

• Generate secret shared polys [Q], [P], and public F such that

[S][Q] – [P]F = 0 if wt(x)

• Get t random points ri, t random masks ei, and run verification for

[S](ri)[Q](ri) = [P]F(ri) using ei

 for 0 < i ≤ t.

https://huelsing.net 28

Identification Schemes

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

IDS

https://huelsing.net 29

Identification Schemes (IDS) /
Zero-knowledge proofs (ZKP)
• Invented by Shafi Goldwasser, Silvio Micali and Charles Rackoff in

1985

• Interactive proof systems

• Prove knowledge of a secret without revealing any information about
the secret

• [For people that like classifications: The IDS we discuss are actually
Honest-Verifier Zero-Knowledge Arguments of Knowledge]

https://huelsing.net 30

Identification schemes (3-round, public coin)

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

Also called a "Sigma Protocol"

https://huelsing.net 31

The case of Sudoku

• A: I have a nice Sudoku for you

• B: You are sure this is solvable?

• A: Sure!

• B: Prove it!

• A: Ok...

5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

https://huelsing.net 32

The case of Sudoku

• So how can Alice prove that a solution exists without making the
Sudoku easier (a.k.a. leaking information)?

https://huelsing.net 33

The case of Sudoku

• Apply random permutation to solution:
1 2 3 4 5 6 7 8 9

3 2 7 1 6 9 4 5 8

5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

6 7 1 9 4 5 8 3 2
9 4 2 3 8 6 7 1 5
3 8 5 7 1 2 6 9 4

5 6 8 4 9 3 1 2 7
1 2 9 5 6 7 4 8 3
4 3 7 8 2 1 5 6 9

8 9 3 6 7 4 2 5 1
2 5 4 1 3 8 9 7 6
7 1 6 2 5 9 3 4 8

https://huelsing.net 34

The case of Sudoku

• Prepare scratch card:

6 7 1 9 4 5 8 3 2
9 4 2 3 8 6 7 1 5
3 8 5 7 1 2 6 9 4

5 6 8 4 9 3 1 2 7
1 2 9 5 6 7 4 8 3
4 3 7 8 2 1 5 6 9

8 9 3 6 7 4 2 5 1
2 5 4 1 3 8 9 7 6
7 1 6 2 5 9 3 4 8

https://huelsing.net 35

The case of Sudoku

Show scratch card to Bob and allow him to ask Alice to do one out of
the following:

• Scratch off a row

• Scratch off a column

• Scratch off a square

• Scratch off original Sudoku

6 7 1 9 4 5 8 3 2
9 4 2 3 8 6 7 1 5
3 8 5 7 1 2 6 9 4

5 6 8 4 9 3 1 2 7
1 2 9 5 6 7 4 8 3
4 3 7 8 2 1 5 6 9

8 9 3 6 7 4 2 5 1
2 5 4 1 3 8 9 7 6
7 1 6 2 5 9 3 4 8

https://huelsing.net 36

The case of Sudoku

What does Bob gain? (Soundness)

• If scratching reveals inconsistency:
Alice cheated!

• If scratching reveals consistent values:
Alice might have cheated...

But Bob gains some confidence in Alice
knowing a solution.

https://huelsing.net 37

The case of Sudoku

• Bob choose from 28 possible “challenges“

• If Alice is cheating she gets caught with prob. ≥
1

28

• Cheating Alice has chance of ≤
27

28
 to succeed

• Repeating protocol 𝑛 times means Alice’s
cheating probability goes down to

27

28

𝑛

≈
1

2

0.05𝑛

• When 𝑛 = 2500, Alice caught with 0.99 probability.

https://huelsing.net 38

The case of Sudoku

(Honest-Verifier) Zero-knowledge:

• We want to show that (honest) Bob does not learn anything about
the secret (i.e., the Sudoku solution)

• We will prove: Everything he learns, he could have generated himself.

• Can be proved showing that Bob (without knowing the secret) could
have generated valid protocol transcripts that are indistinguishable
from those obtained by communicating with Alice. ?

https://huelsing.net 39

The case of Sudoku

Proving zero-knowledge:

• Trick: When Bob generates transcripts, he can first select the challenge,
then produce the scratch card!

• For challenge row, column, or square: Just put random permutation of
1...9.

• For challenge original Sudoku: Just put random permutation of the used
numbers.

⟹ Follows exactly same distribution as what Alice would have put there!

https://huelsing.net 40

The case of Sudoku - Implications

Yato 2003:
„Solvability of n x n Sudoku is NP-complete“

• We can use this proof for any other problem in NP

• Just transform problem instance into Sudoku instance and run ZKP for
that instance.

https://huelsing.net 41

Identification schemes (3-round, public coin)

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

Also called a "Sigma Protocol"

https://huelsing.net 42

Security Properties

• Soundness: A prover that does not know the secret will get caught with
 high probability (1 – e) where e is called soundness error

• Special soundness: There exists an efficient extractor E that given two
 transcripts with same w but different c, extracts sk.

• Honest verifier zero-knowledge (HVZK): There exists an efficient simulator S
 that, given only the public key, outputs transcripts which are
 indistinguishable from transcripts of honest protocol runs

https://huelsing.net 43

Identification schemes (5-round, public coin)

Prover P (sk) Verifier V (pk)

w

c1

z1

w <- Commit(sk)

c1 <-R CSpace1

z1 <- Response(sk,w,c1)

b <- Verify(pk,w,c1,z1,c2,z2)

c2

z

c2 <-R CSpace2

z2 <- Response(sk,w,c1,z1,c2)

https://huelsing.net 44

More notes on IDS

• We can have 2n+1 round IDS for n ≥ 1

• We usually require that w has high entropy (hard to predict)

• Commitment-recoverable IDS:
• There exist function Recv(c, z) -> w

• We later need negligible soundness error
• Achieved via parallel composition

https://huelsing.net 45

MPC in the Head
Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai.
“Zero-knowledge from secure multiparty computation”. STOC'07

46

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

MPC in the Head

MPC

IDS

https://huelsing.net 46

MPCitH for PQ-identification
(Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-knowledge from secure multiparty computation”. STOC'07)

Given OWF F: X -> Y

Create identification scheme IDS that proves knowledge of x such that

F(x) = y

for given y in (honest-verifier) zero-knowledge.

sk = x, pk = y[, F]

https://huelsing.net 47

High-level idea

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit([x]),

c <-R {1, … , 5}

z <- Pi forall i ≠ c
Check consistency of all opened parties &
verify result

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

https://huelsing.net 48

Security - Soundness

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit([x]),

c <-R {1, … , 5}

z <- Pi forall i ≠ c

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

Check consistency of all opened parties &
verify result

https://huelsing.net 49

Security - Soundness

Prover P (sk) Verifier V (pk)

w

c = 4

z

w <- Commit([x]),

c <-R {1, … , 5}

z <- Pi for i ≠ 4

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

Check consistency of all opened parties &
verify result

https://huelsing.net 50

Security - Soundness

Prover P (sk) Verifier V (pk)

w

c ≠ 4

z

w <- Commit([x]),

c <-R {1, … , 5}

z <- Pi forall i ≠ c

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

Check consistency of all opened parties &
verify result

https://huelsing.net 51

Security - Soundness

Soundness

• Only if c = iA, A will go undetected!

• Soundness error = 1 / N for N parties

Special soundness:

• Valid openings for c1 ≠ c2 reveal all Pi

• => Can recombine [x]

https://huelsing.net 52

Security - HVZK

• Simulator samples random c first

• Generates Pi, i ≠ c, honestly, with random inputs

• Choses communication of Pc such that result is correct

• Computes all other parts following protocol

https://huelsing.net 53

Real life...

• We need the random e for multiplication check!
(and for SDitH also the points r)

• Add a round trip ...

https://huelsing.net 54

Commit

• Share secret [x], generate required number (say t) of multiplication
triples ([a],[b],[c])i

• Commit to all the shares of one party together.

• Send commitments to V

https://huelsing.net 55

Challenge 1

• Send t random values ei for multiplication verification
(SDitH: Also t random points ri to evaluate polynomials on)

https://huelsing.net 56

Response 1

• Run MPC protocol using commited shares and ei

• Assemble and send communication of all multiplication verifications

https://huelsing.net 57

Challenge 2

• Send random c within {1, … , N}

https://huelsing.net 58

Response 2

• Send all shares of each party Pi, i ≠ c

https://huelsing.net 59

Verify

• Run MPC protocol with "opened parties" using communications of
unopened party

• Check that all communications are consistent

• Check that final result is correct
(usually, C is built such that result is 0)

https://huelsing.net 60

Impact on security

• HVZK: None – just sample all challenges in advance

• Soundness: Two ways of cheating -> guessing an e and manipulating
the multiplication test or guessing the second challenge.

• Soundness error becomes 1 / |Fq| + 1 / N

https://huelsing.net 61

Optimizations

• Generate secret shares using PRG, e.g.:
x = [x]1 + [x]2 + … + [x]N + Δ for [x]i = PRG(si) and Δ = x - Σ[x]I

• requires to send the Δ in first communication!

• Only need to commit to and later open si which are shorter than [x]i

• Generate si using TreePRG
• Allows to open all but one leaf publishing log N seeds in place of N!

• Hash commitment message and send unopened commitments in last
message: w' = H(w)
• Commitment-recoverable IDS

• MUCH shorter w, only slightly longer z

https://huelsing.net 62

Hypercube verification

Carlos Aguilar-Melchor, Nicolas Gama,
James Howe, Andreas Hülsing, David
Joseph, and Dongze Yue

"The Return of the SDitH".
EUROCRYPT'23

https://huelsing.net 63

Fiat-Shamir

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

IDS

SK

Sign Vrfy

PK /

DSig

Fiat-Shamir

https://huelsing.net 64

Fiat-Shamir Signatures

Sign (sk,m)

1. w <- P.commit(sk)

2. c <- hash(pk, w, m)

3. z <- P.response(sk, w, c)

4. Return sig = (w, c, z)

Verify (pk, m, sig)

1. c <- hash(pk, w, m)

2. b <- V.verify(pk, w, c, z)

https://huelsing.net 65

Why is this secure?

• HVZK -> Forger does not learn anything about the secret (or how to sign a
different message) from seeing signatures on chosen messages
• Proof idea: (Q)ROM proof.
• Answer queries by running HVZK simulator
• Program RO to make them consistent (set c <- H(w,m))

• Soundness -> Cannot do better than guessing the challenge per hash query
/ finding a suitable preimage for given challenge
• For special case of 3-round commit & open IDS with special soundness doable in

QROM, otherwise complicated (massive loss, hard proof)
• If the adversary has higher success probability than the soundness error, it must be able to

answer for more than one challenge.
• All openings must be sound
• Implementing the commitment using a random oracle, we can open all commitments using

the random oracle table -> can generate two valid transcripts for different c & extract

https://huelsing.net 66

SDitH in the QROM
(Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue. SDitH in the QROM. Asiacrypt'23)

• Can turn SDitH IDS into 3 round IDS replacing first challenge by hash
of first message (FS but easier proof -> search problem)

• Get a scheme with query-bounded special soundness

• Apply FS for 3-round commit & open IDS in QROM

https://huelsing.net 67

Summary

Fx y

P1([x]1)

P2([x]2)P5([x]5)

P4([x]4) P3([x]3)

x = [x]1 + [x]2 + … + [x]N

C([x]1, [x]2, …, [x]N) = F(x)

Prover P (sk) Verifier V (pk)

w

c

z

w <- Commit(sk)

c <-R CSpace

z <- Response(sk,w,c)

b <- Verify(pk,w,c,z)

MPC in the Head

OWF MPC

IDS

SK

Sign Vrfy

PK /

DSig

Fiat-Shamir

https://huelsing.net 68

Conclusion

• MPCitH allows to build signature scheme from OWF

• Works best for functions with mostly linear steps

• Several nice optimizations exist

• Quite competitive:
• small sk,

• small pk,

• medium sigs,

• fast

• allows for
online / offline sigs

(Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue. SDitH in the QROM. Asiacrypt'23)

https://huelsing.net 69

	Slide 1: Signatures from identification, MPCitH, and more
	Slide 2: PQ Signatures
	Slide 3: Syndrome Decoding in the Head (FJR22)
	Slide 4: Outline
	Slide 5: Outline
	Slide 6: OWF
	Slide 7: (secure) Multi-Party Computation
	Slide 8: MPC 
	Slide 9: Example: Price negotiations
	Slide 10: MPC 
	Slide 11: (additive) Secret Sharing Scheme (SSS)
	Slide 12: MPC for additive SSS
	Slide 13: MPC for additive SSS
	Slide 14: Share multiplication
	Slide 15: Verifying multiplication
	Slide 16: Verifying multiplication – Correctness
	Slide 17: Verifying multiplication – Soundness
	Slide 18: Verifying multiplication – Soundness
	Slide 19: Verifying multiplication – Soundness
	Slide 20: Verifying multiplication – Soundness
	Slide 21: Verifying multiplication – Soundness
	Slide 22: Function to circuit - Examples
	Slide 23: Function to circuit: SDitH (FJR'22)
	Slide 24: Function to circuit: SDitH (FJR'22)
	Slide 25: Function to circuit: SDitH (FJR'22)
	Slide 26: SDitH – Implicit Equation Check
	Slide 27: SDitH – Weight check
	Slide 28: SDitH – MPC circuit
	Slide 29: Identification Schemes
	Slide 30: Identification Schemes (IDS) / Zero-knowledge proofs (ZKP)
	Slide 31: Identification schemes (3-round, public coin)
	Slide 32: The case of Sudoku
	Slide 33: The case of Sudoku
	Slide 34: The case of Sudoku
	Slide 35: The case of Sudoku
	Slide 36: The case of Sudoku
	Slide 37: The case of Sudoku
	Slide 38: The case of Sudoku
	Slide 39: The case of Sudoku
	Slide 40: The case of Sudoku
	Slide 41: The case of Sudoku - Implications
	Slide 42: Identification schemes (3-round, public coin)
	Slide 43: Security Properties
	Slide 44: Identification schemes (5-round, public coin)
	Slide 45: More notes on IDS
	Slide 46: MPC in the Head
	Slide 47: MPCitH for PQ-identification (Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-knowledge from secure multiparty computation”. STOC'07)
	Slide 48: High-level idea
	Slide 49: Security - Soundness
	Slide 50: Security - Soundness
	Slide 51: Security - Soundness
	Slide 52: Security - Soundness
	Slide 53: Security - HVZK
	Slide 54: Real life...
	Slide 55: Commit
	Slide 56: Challenge 1
	Slide 57: Response 1
	Slide 58: Challenge 2
	Slide 59: Response 2
	Slide 60: Verify
	Slide 61: Impact on security
	Slide 62: Optimizations
	Slide 63: Hypercube verification
	Slide 64: Fiat-Shamir
	Slide 65: Fiat-Shamir Signatures
	Slide 66: Why is this secure?
	Slide 67: SDitH in the QROM (Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue. SDitH in the QROM. Asiacrypt'23)
	Slide 68: Summary
	Slide 69: Conclusion 

