Signatures from identification, MPCitH, and more

Andreas Hülsing Eindhoven University of Technology & SandboxAQ

PQ Signatures

- Signatures vs KEM: Should be easier ... it isn't...
- Approaches:
 - 1. Hash & Sign
 - Full Domain Hash (FDH) with Trapdoor OWP: RSA-PSS, MAYO, UOV,...
 - FDH with Preimage-sampleable TDF: Falcon
 - Hash-based signatures
 - 2. Signatures from identification:
 - Fiat-Shamir (FS): (EC)DSA, Schnorr, ...
 - FS with aborts: Dilithium
 - FS + MPC in the Head (MPCitH): Picnic, Biscuit, MIRA, MiRitH, MQOM, PERK, RYDE, SDitH, AIMer, ...

Syndrome Decoding in the Head (FJR22)

- Code-based signature scheme using MPCitH
- Beats all previous code-based signatures
- Uses unstructured SD problem!

Source:

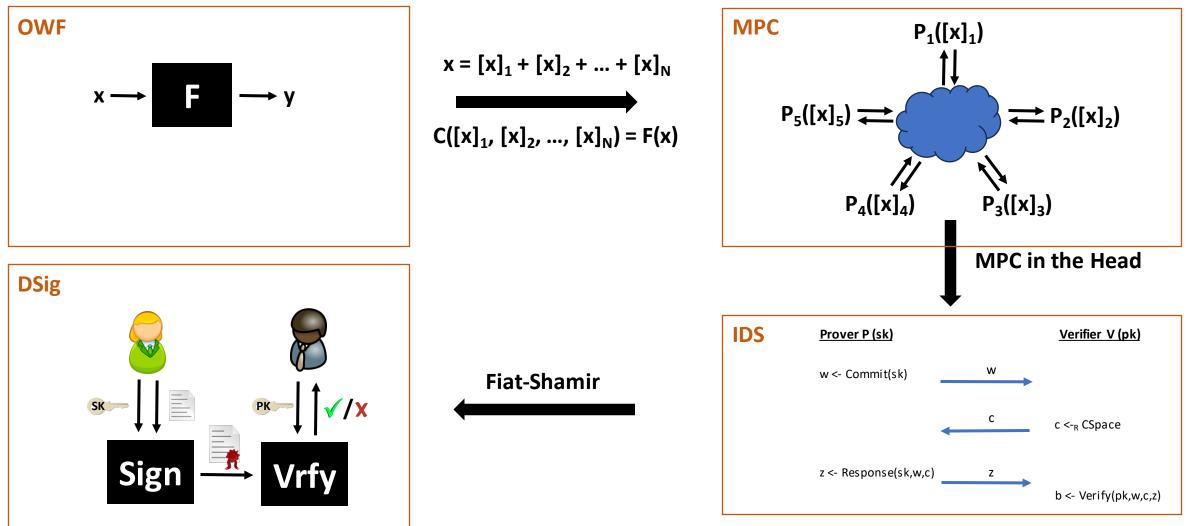
Thibauld Feneuil, Antoine Joux, and Matthieu Rivain.

"Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs". Crypto'22

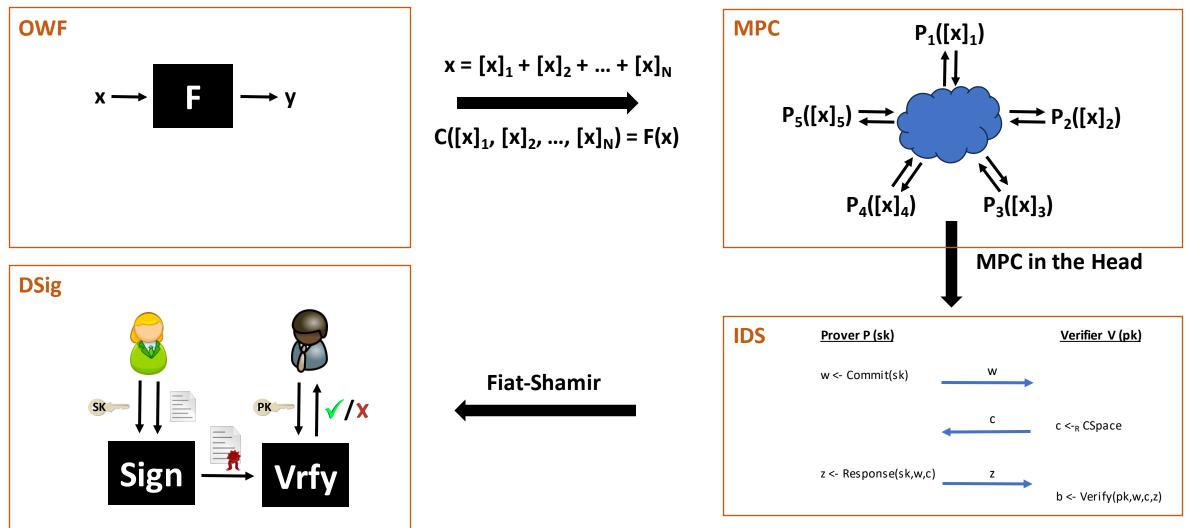
	V					A (*		
Scheme Name	Year	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$	Assumption		
Wave	2019	2.07 K	3.2 M	300	-	SD over \mathbb{F}_3 (large weight)		
vvave						(U, U + V)-codes indisting.		
Durandal - I	2018	3.97 K	14.9 K	4	5	Rank SD over \mathbb{F}_{2^m}		
Durandal - II	2018	4.90 K	$18.2 \mathrm{K}$	5	6	Rank SD over \mathbb{F}_{2^m}		
LESS-FM - I	2020	15.2 K	9.77 K	-	-	Linear Code Equivalence		
LESS-FM - II	2020	$5.25 \mathrm{K}$	$206 \mathrm{K}$	-	-	Perm. Code Equivalence		
LESS-FM - III	2020	10.39 K	$11.57~\mathrm{K}$	-	-	Perm. Code Equivalence		
GPS22-256	2021	24.0 K	0.11 K	-	-	SD over \mathbb{F}_{256}		
[GPS22]-1024	2021	19.8 K	$0.12~{ m K}$	-	-	SD over \mathbb{F}_{1024}		
[FJR21] (fast)	2021	22.6 K	0.09 K	13	12	SD over \mathbb{F}_2		
[FJR21] (short)	2021	16.0 K	0.09 K	62	57	SD over \mathbb{F}_2		
[BGKM22] - Sig1	2022	23.7 K	0.1 K	-	-	SD over \mathbb{F}_2		
[BGKM22] - Sig2	2022	20.6 K	$0.2~{ m K}$	-	-	(QC)SD over \mathbb{F}_2		
Our scheme - Var1f	2022	15.6 K	0.09 K	-	-	SD over \mathbb{F}_2		
Our scheme - Var1s	2022	10.9 K	0.09 K	-	-	SD over \mathbb{F}_2		
Our scheme - Var2f	2022	17.0 K	0.09 K	13	13	SD over \mathbb{F}_2		
Our scheme - Var2s	2022	11.8 K	$0.09~{ m K}$	64	61	SD over \mathbb{F}_2		
Our scheme - Var3f	2022	11.5 K	0.14 K	6	6	SD over \mathbb{F}_{256}		
Our scheme - Var3s	2022	8.26 K	$0.14~{ m K}$	30	27	SD over \mathbb{F}_{256}		

Table 6. Comparison of our scheme with signatures from the literature (128-bit security). The sizes are in bytes and the timings are in milliseconds. Reported timings are from the original publications: Wave has been benchmarked on a 3.5 Ghz Intel Xeon E3-1240 v5, Durandal on a 2.8 GHz Intel Core i5-7440HQ, while [FJR21] and our scheme on a 3.8 GHz Intel Core i7.

Outline



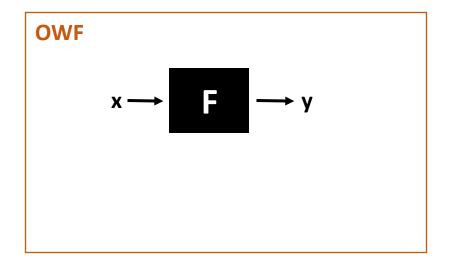
Outline

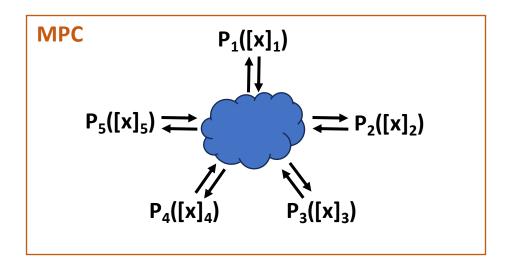


OWF

- AES (FEAST)
- LowMC (Picnic)
- AIM (AIMer)
- Polynomial arithmetic & evaluation (SDitH)
- MQ equation system (Biscuit)

Low multiplicative depth is an advantage!



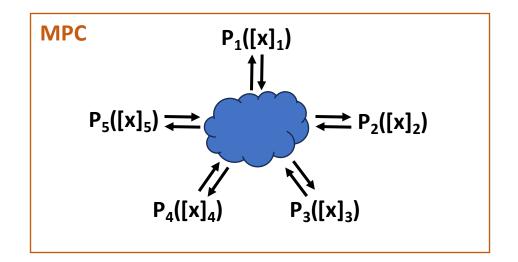


(secure) Multi-Party Computation

MPC

Allows N parties $P_1, ..., P_N$ with inputs $x_1, ..., x_N$ to jointly compute a function $F(x_1, ..., x_N) = y$ such that

- all parties learn the outcome y
- but nothing beyond that



Example: Price negotiations

Buyer & Seller compute if they can agree on price X

- Logical AND of "willingness"
- If you do not agree, you do not learn the other party's decision!
- Prevents pushing up / down to limit of other party

MPC

Allows N parties $P_1, ..., P_N$ with inputs $x_1, ..., x_N$ to jointly compute a function $F(x_1, ..., x_N) = y$ such that

- all parties learn the outcome y
- but nothing beyond that

We additionally need:

- Correctness: If all parties are honest, the result is correct
- N-1 private: If N-1 parties collaborate, they can still not learn anything about the input of the last party beyond what can be derived from $F(x_1, ..., x_N) = y$
- Broadcast communication: All messages are broadcasted

(additive) Secret Sharing Scheme (SSS)

Split $x = [x]_1 + [x]_2 + ... + [x]_N$ with secret shares $[x]_i$ in \mathbb{F}_q

• Given all but one share x is information theoretically hidden!

MPC for additive SSS

Split $x = [x]_1 + [x]_2 + ... + [x]_N$ with secret shares $[x]_i$ in \mathbb{F}_q Party i holds share $[x]_i$ of value x.

Operations:

- Adding shared values ([x] + [y]): Parties locally add shares $\Sigma([x]_i+[y]_i) = \Sigma[x]_i + \Sigma[y]_i = x+y$
- Adding constant ([x] + c): P1 computes $[x]_1 + c$, all others do nothing $[x]_1 + c + [x]_2 + ... + [x]_N = \Sigma[x]_i + c = x + c$
- Multiplication by constant ([x] \cdot c): All parties locally compute [x]_i \cdot c [x]₁ \cdot c + [x]₂ \cdot c + ... + [x]_N \cdot c = ([x]₁ + [x]₂ + ... + [x]_N) \cdot c = x \cdot c

MPC for additive SSS

Split $x = [x]_1 + [x]_2 + ... + [x]_N$ with secret shares $[x]_i$ in \mathbb{F}_q Party i holds share $[x]_i$ of value x.

Operations:

- Adding shared values ([x] + [y]): Parties locally add shares $\Sigma([x]_i+[y]_i) = \Sigma[x]_i + \Sigma[y]_i = x+y$
- Adding constant ([x] + c): P1 computes $[x]_1 + c$, all others do nothing $[x]_1 + c + [x]_2 + ... + [x]_N = \Sigma[x]_i + c = x + c$
- Multiplication by constant ([x] \cdot c): All parties locally compute [x]_i \cdot c [x]₁ \cdot c + [x]₂ \cdot c + ... + [x]_N \cdot c = ([x]₁ + [x]₂ + ... + [x]_N) \cdot c = x \cdot c

Multiplication of shared values?

Share multiplication

- Conventional:
 - (Katz, Kolesnikov, Wang. "Improved non-interactive zero knowledge with applications to post-quantum signatures". CCS 2018)
 - All parties know one share of both inputs
 - After protocol, all parties know a share of the output

• Modern:

- (Lindell, Nof. "A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority". CCS 2017)
- (Baum, Nof. "Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to Lattice-Based Cryptography". PKC 2020)
- All parties know a share of both inputs and the output
- Protocol proves that output is a sharing of product of input

Verifying multiplication

Parties need random triple [a], [b], [c], with ab = c, to verify [x], [y], [z], with xy = z

- Take random element e in F_q
- Parties locally set $[\alpha] = e[x] + [a]$ and $[\beta] = [y] + [b]$
- Parties broadcast [α] and [β] shares to open α and β
- Parties locally set $[v] = e[z] [c] + \alpha \cdot [b] + \beta \cdot [a] \alpha \cdot \beta$ (note that last summand is only subtracted by P₁)
- Parties broadcast [v] shares to open v and accept if v = 0.

Verifying multiplication – Correctness

•
$$v = e \cdot z - c + \alpha \cdot b + \beta \cdot a - \alpha \cdot \beta$$

= $e \cdot xy - ab + (e \cdot x + a)b + (y + b)a - (e \cdot x + a)(y + b)$
= $exy - ab + exb + ab + ya + ba - exy - exb - ay - ab = 0$

•
$$v = e \cdot z - c + \alpha \cdot b + \beta \cdot a - \alpha \cdot \beta$$

= $e \cdot xy - ab + (e \cdot x + a)b + (y + b)a - (e \cdot x + a)(y + b)$
= $exy - ab + exb + ab + ya + ba - exy - exb - ay - ab = 0$

• Let
$$z = xy + d_z$$
 and $c = ab + d_c$
• $v = e \cdot z - c + \alpha \cdot b + \beta \cdot a - \alpha \cdot \beta$
 $= e \cdot xy + ed_z - ab - d_c + (e \cdot x + a)b + (y + b)a - (e \cdot x + a)(y + b)$
 $= 0 + ed_z - d_c$

Claim: If $d_z \neq 0$ or $d_c \neq 0$ then v = 0 with probability at most $1 / |F_q|$ Proof: Recall $v = ed_z - d_c$

• Case $d_z = 0 \& d_c \neq 0$:

$$v = ed_z - d_c = -d_c \neq 0$$

- Claim: If $d_z \neq 0$ or $d_c \neq 0$ then v = 0 with probability at most 1 / $|F_q|$ Proof: Recall $v = ed_z - d_c$
- Case $d_z = 0 \& d_c \neq 0$:

$$v = ed_z - d_c = -d_c \neq 0$$

- Case $d_z \neq 0 \& d_c \neq 0$:
 - $v = 0 \iff d_c = ed_z \iff d_c d_z^{-1} = e (prob 1 / |F_q|)$

- Claim: If $d_z \neq 0$ or $d_c \neq 0$ then v = 0 with probability at most $1 / |F_q|$ Proof: Recall $v = ed_z - d_c$
- Case $d_z = 0 \& d_c \neq 0$:

$$v = ed_z - d_c = -d_c \neq 0$$

Case d_z ≠ 0 & d_c ≠ 0: v = 0 <=> d_c = ed_z <=> d_cd_z⁻¹= e (prob 1 / |F_q|)
Case d_z ≠ 0 & d_c = 0: v = ed_z - d_c = edz => v = 0 iff e = 0 (prob 1 / |F_q|)

Function to circuit - Examples

Evaluating shared polynomial $[P] = \Sigma [p_i] x^i$ at public point r:

- Locally: $[P](r) = \Sigma [p_i] r^i = [y]$
 - No interaction
 - Single secret shared value as outcome

Evaluating product of shared polynomials [P], [S] at public point r:

- Requires knowledge of result [z]
- Locally: $[P](r) = \Sigma [p_i] r^i = [y], [S](r) = \Sigma [s_i] r^i = [x]$
- Run verify for $[x] \cdot [y] = [z]$
 - Single broadcast interaction + final opening

Function to circuit: SDitH (FJR'22)

• Turn Syndrome Decoding function into MPC

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a uniformly random parity check matrix $\mathbf{H} \in \mathbb{F}_{SD}^{(m-k) \times m}$, and binary vector $\mathbf{x} \in \mathbb{F}_{SD}^{m}$ with $wt(\mathbf{x}) = \omega$. Let syndrome $\mathbf{y} = \mathbf{H}\mathbf{x}$. Then given only \mathbf{H}, \mathbf{y} , it is difficult to find $\mathbf{x}' \in \mathbb{F}_{SD}^{m}$ such that $\mathbf{H}\mathbf{x}' = \mathbf{y}$ with $wt(\mathbf{x}') \leq \omega$.

Function to circuit: SDitH (FJR'22)

• Turn Syndrome Decoding function into MPC

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a uniformly random parity check matrix $\mathbf{H} \in \mathbb{F}_{SD}^{(m-k) \times m}$, and binary vector $\mathbf{x} \in \mathbb{F}_{SD}^{m}$ with $wt(\mathbf{x}) = \omega$. Let syndrome $\mathbf{y} = \mathbf{H}\mathbf{x}$. Then given only \mathbf{H}, \mathbf{y} , it is difficult to find $\mathbf{x}' \in \mathbb{F}_{SD}^{m}$ such that $\mathbf{H}\mathbf{x}' = \mathbf{y}$ with $wt(\mathbf{x}') \leq \omega$.

• Advantage: Linear function.

Function to circuit: SDitH (FJR'22)

• Turn Syndrome Decoding function into MPC

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a uniformly random parity check matrix $\mathbf{H} \in \mathbb{F}_{SD}^{(m-k) \times m}$, and binary vector $\mathbf{x} \in \mathbb{F}_{SD}^{m}$ with $wt(\mathbf{x}) = \omega$. Let syndrome $\mathbf{y} = \mathbf{H}\mathbf{x}$. Then given only \mathbf{H}, \mathbf{y} , it is difficult to find $\mathbf{x}' \in \mathbb{F}_{SD}^{m}$ such that $\mathbf{H}\mathbf{x}' = \mathbf{y}$ with $wt(\mathbf{x}') \leq \omega$.

- Advantage: Linear function.
- Disadvantage: Weight check.

SDitH – Implicit Equation Check

- Use H in standard form: $H = (H' | I_{m-k})$
- Can write $x = (x_A | x_B)$ with $y = H'x_A + x_B$
- Define $sk = x_A$
- Compute x via $x_B = y H'x_A$
 - => guarantees x fulfills y = Hx

SDitH – Weight check

- Compute x from x_A, H, and y
- Derive a polynomial S from x
- Generate polys Q, P, and public F such that

SQ - PF = 0 if $wt(x) \le \omega$.

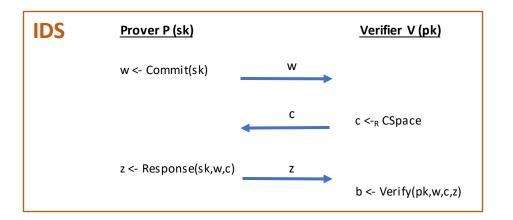
• Select t random points r_i and verify that

 $S(r_i)Q(r_i) = PF(r_i)$ for $0 < i \le t$.

SDitH – MPC circuit

- Compute [x] from [x_A], H, and y (only linear ops)
- Derive share of polynomial [S] from [x] (only linear ops)
- Generate secret shared polys [Q], [P], and public F such that [S][Q] [P]F = 0 if wt(x) $\leq \omega$.
- Get t random points r_i , t random masks e_i , and run verification for [S](r_i)[Q](r_i) = [P]F(r_i) using e_i

for $0 < i \le t$.

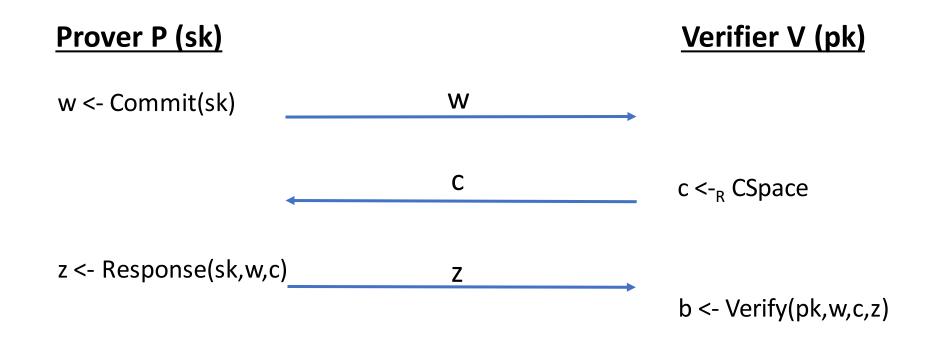


Identification Schemes

Identification Schemes (IDS) / Zero-knowledge proofs (ZKP)

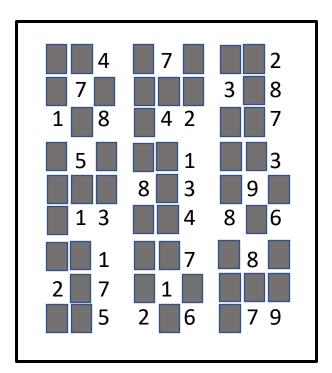
- Invented by Shafi Goldwasser, Silvio Micali and Charles Rackoff in 1985
- Interactive proof systems
- Prove knowledge of a secret without revealing any information about the secret
- [For people that like classifications: The IDS we discuss are actually Honest-Verifier Zero-Knowledge Arguments of Knowledge]

Identification schemes (3-round, public coin)

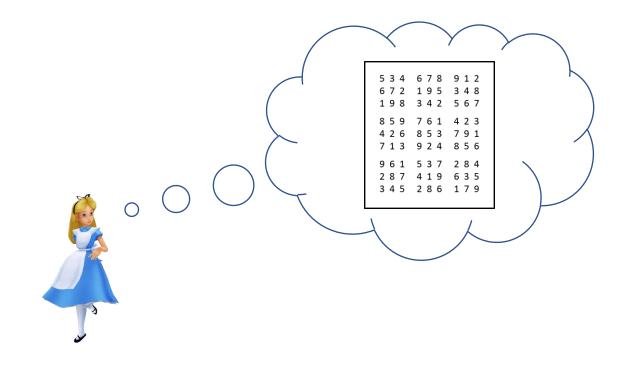


Also called a "Sigma Protocol"

- A: I have a nice Sudoku for you
- B: You are sure this is solvable?
- A: Sure!
- B: Prove it!
- A: Ok...



• So how can Alice prove that a solution exists without making the Sudoku easier (a.k.a. leaking information)?

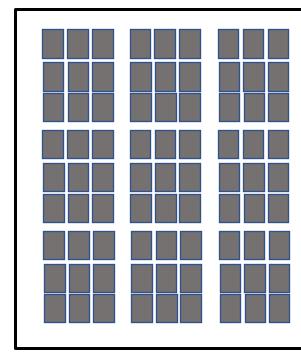


• Apply random permutation to solution:

	I								
1	2	3	4	5	6	7	8	9	
3	2	7	1	6	9	4	5	8	
				-					
53	4 6	78	912				671	945	832
67			348				942	386	715
19	8 3	42	567				385	712	694
85	9 7	61	423				568	493	127
42	6 8	53	791			•	129	567	483
71	3 9	24	856				437	821	569
96	1 5	37	284				893	674	251
28	7 4	19	635				254	138	976
34	5 2	86	179				716	259	3 4 8
				https:	//huelsing.r	net			

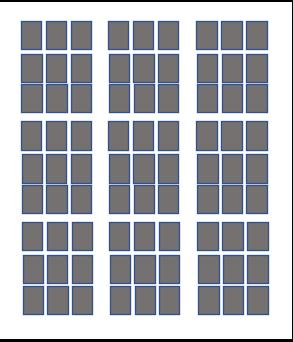
7

• Prepare scratch card:



Show scratch card to Bob and allow him to ask Alice to do **one** out of the following:

- Scratch off a row
- Scratch off a column
- Scratch off a square
- Scratch off original Sudoku



What does Bob gain? (Soundness)

- If scratching reveals inconsistency: Alice cheated!
- If scratching reveals consistent values: Alice might have cheated...

But Bob gains some confidence in Alice knowing a solution.

- Bob choose from 28 possible "challenges"
- If Alice is cheating she gets caught with prob. $\geq \frac{1}{28}$
- Cheating Alice has chance of $\leq \frac{27}{28}$ to succeed
- Repeating protocol *n* times means Alice's cheating probability goes down to

$$\left(\frac{27}{28}\right)^n \approx \left(\frac{1}{2}\right)^{0.05n}$$

• When n = 2500, Alice caught with 0.99 probability.

(Honest-Verifier) Zero-knowledge:

- We want to show that (honest) Bob does not learn anything about the secret (i.e., the Sudoku solution)
- We will prove: Everything he learns, he could have generated himself.
- Can be proved showing that Bob (without knowing the secret) could have generated valid protocol transcripts that are indistinguishable from those obtained by communicating with Alice.

Proving zero-knowledge:

- Trick: When Bob generates transcripts, he can first select the challenge, then produce the scratch card!
- For challenge row, column, or square: Just put random permutation of 1...9.
- For challenge original Sudoku: Just put random permutation of the used numbers.

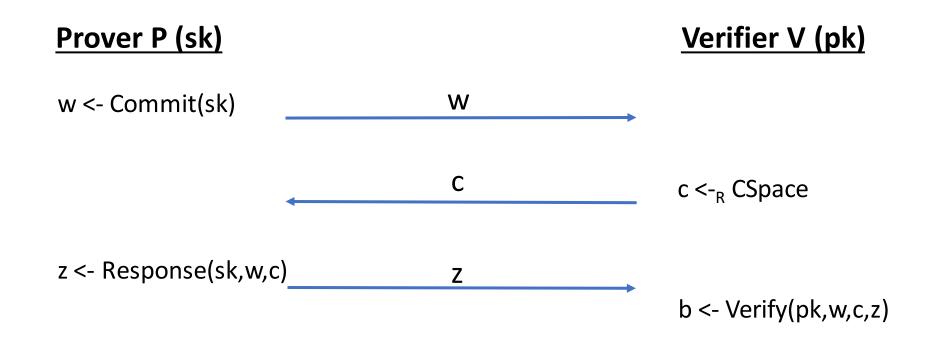
 \Rightarrow Follows exactly same distribution as what Alice would have put there!

The case of Sudoku - Implications

Yato 2003: "Solvability of n x n Sudoku is NP-complete"

- We can use this proof for any other problem in NP
- Just transform problem instance into Sudoku instance and run ZKP for that instance.

Identification schemes (3-round, public coin)

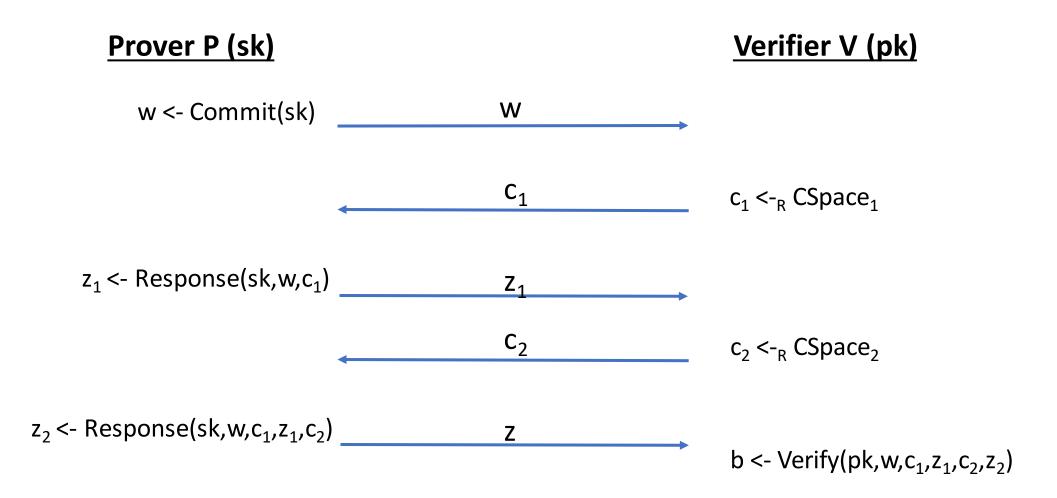


Also called a "Sigma Protocol"

Security Properties

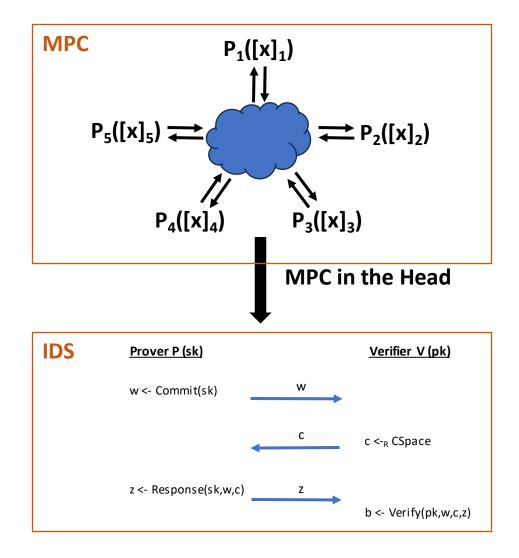
- Soundness: A prover that does not know the secret will get caught with high probability (1 – e) where e is called soundness error
- **Special soundness:** There exists an efficient extractor E that given two transcripts with same w but different c, extracts sk.
- Honest verifier zero-knowledge (HVZK): There exists an efficient simulator S that, given only the public key, outputs transcripts which are indistinguishable from transcripts of honest protocol runs

Identification schemes (5-round, public coin)



More notes on IDS

- We can have 2n+1 round IDS for $n \ge 1$
- We usually require that w has high entropy (hard to predict)
- Commitment-recoverable IDS:
 - There exist function Recv(c, z) -> w
- We later need negligible soundness error
 - Achieved via parallel composition



MPC in the Head

Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. "Zero-knowledge from secure multiparty computation". STOC'07

46

MPCitH for PQ-identification

(Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. "Zero-knowledge from secure multiparty computation". STOC'07)

Given OWF F: X -> Y

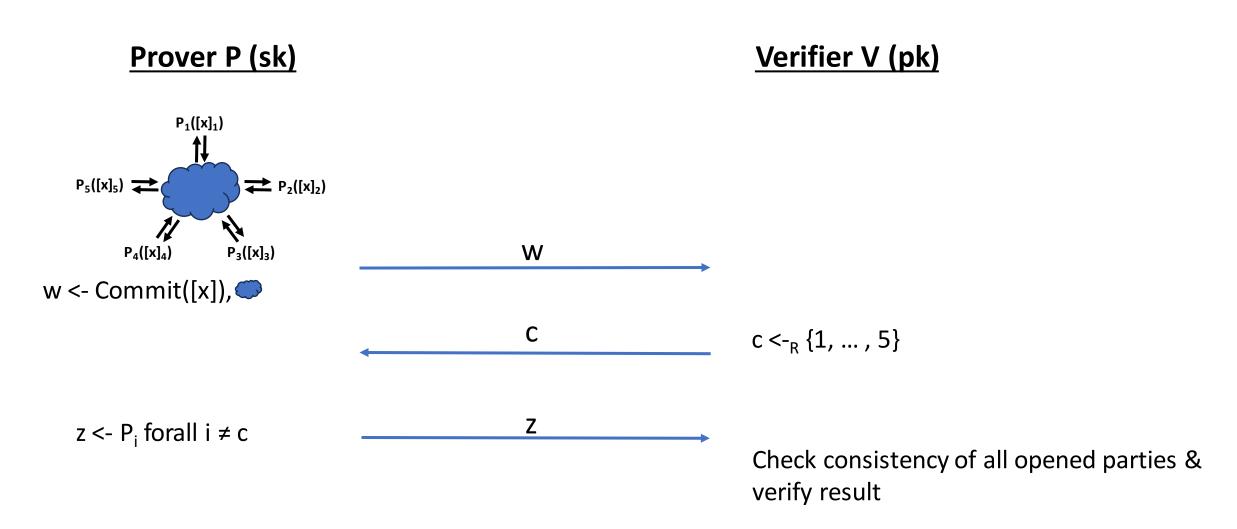
Create identification scheme IDS that proves knowledge of x such that

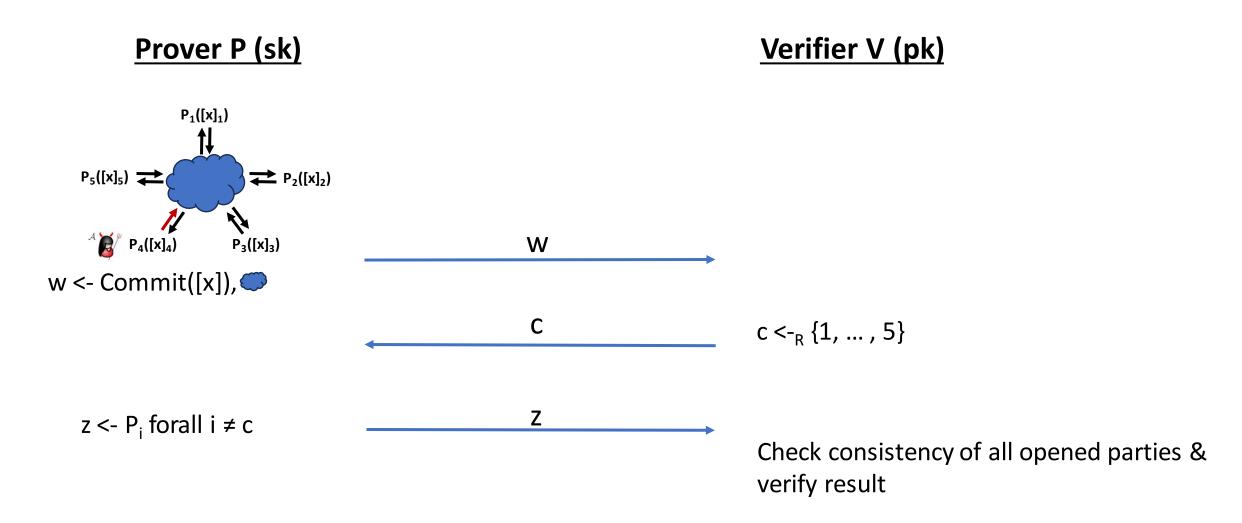
F(x) = y

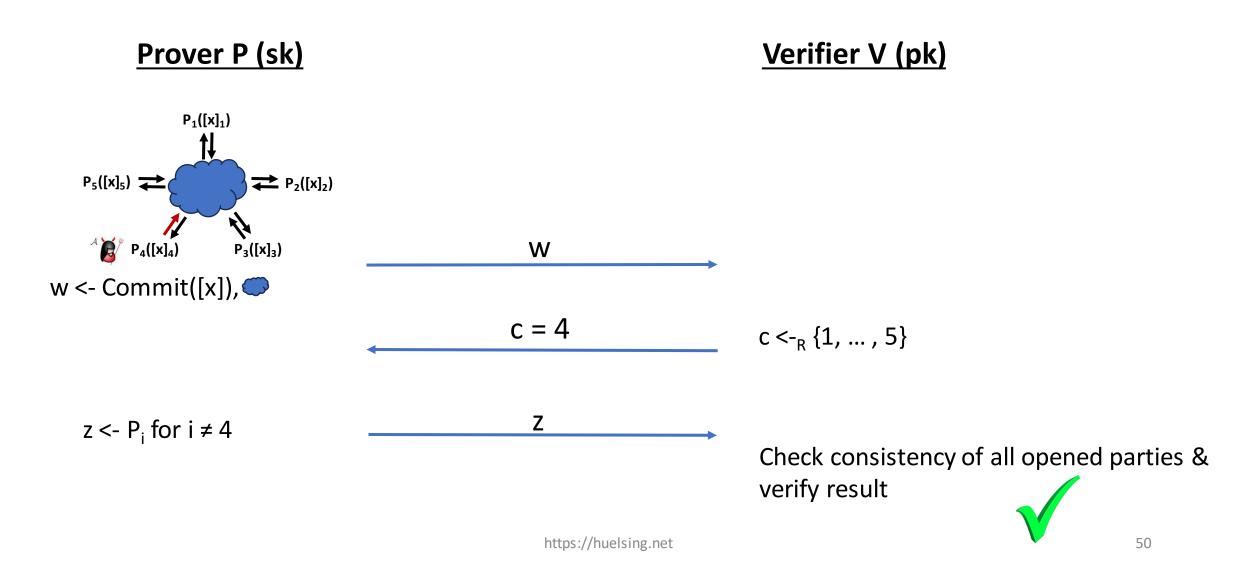
for given y in (honest-verifier) zero-knowledge.

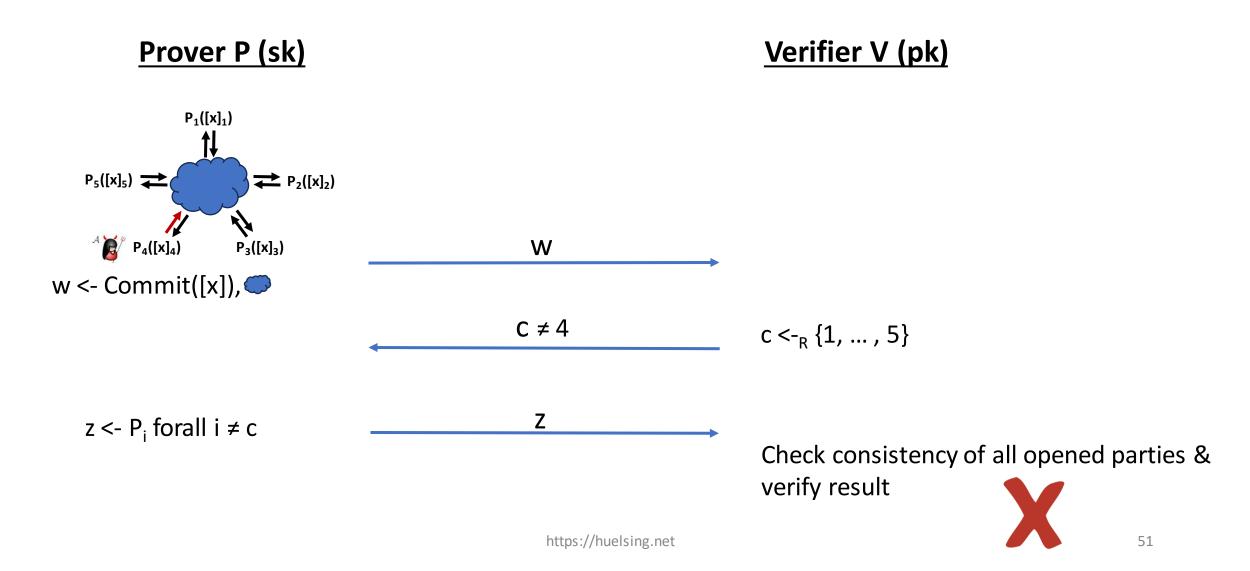
sk = x, pk = y[, F]

High-level idea









Soundness

- Only if c = i_A, A will go undetected!
- Soundness error = 1 / N for N parties

Special soundness:

- Valid openings for $c_1 \neq c_2$ reveal all P_i
- => Can recombine [x]

Security - HVZK

- Simulator samples random c first
- Generates P_i , i \neq c, honestly, with random inputs
- Choses communication of P_c such that result is correct
- Computes all other parts following protocol

- We need the random e for multiplication check! (and for SDitH also the points r)
- Add a round trip ...

Commit

- Share secret [x], generate required number (say t) of multiplication triples ([a],[b],[c])_i
- Commit to all the shares of one party together.
- Send commitments to V

Challenge 1

 Send t random values e_i for multiplication verification (SDitH: Also t random points r_i to evaluate polynomials on)

Response 1

- Run MPC protocol using commited shares and e_i
- Assemble and send communication of all multiplication verifications

• Send random c within {1, ..., N}

• Send all shares of each party P_i , $i \neq c$

Verify

- Run MPC protocol with "opened parties" using communications of unopened party
- Check that all communications are consistent
- Check that final result is correct (usually, C is built such that result is 0)

Impact on security

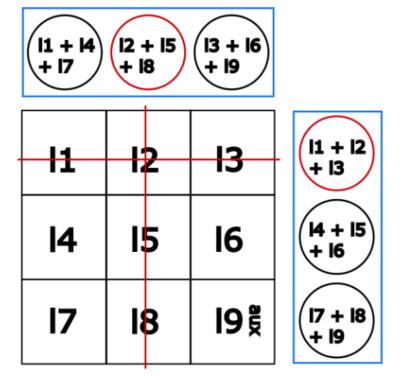
- HVZK: None just sample all challenges in advance
- Soundness: Two ways of cheating -> guessing an e and manipulating the multiplication test or guessing the second challenge.
- Soundness error becomes $1 / |F_q| + 1 / N$

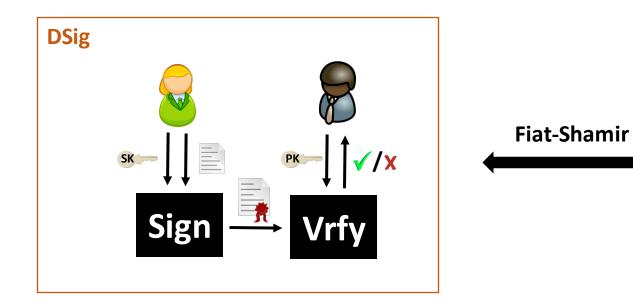
Optimizations

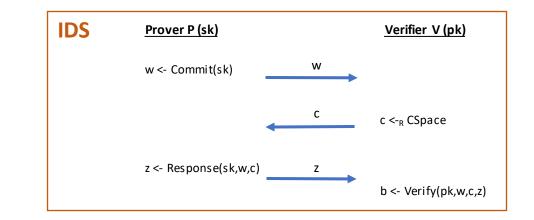
- Generate secret shares using PRG, e.g.:
 - $x = [x]_1 + [x]_2 + ... + [x]_N + \Delta \text{ for } [x]_i = PRG(s_i) \text{ and } \Delta = x \Sigma[x]_i$
 - requires to send the Δ in first communication!
 - Only need to commit to and later open s_i which are shorter than [x]_i
- Generate s_i using TreePRG
 - Allows to open all but one leaf publishing log N seeds in place of N!
- Hash commitment message and send unopened commitments in last message: w' = H(w)
 - Commitment-recoverable IDS
 - MUCH shorter w, only slightly longer z

Hypercube verification

Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, and Dongze Yue "The Return of the SDitH". EUROCRYPT'23







Fiat-Shamir

Fiat-Shamir Signatures

Sign (sk,m)

- 1. w <- P.commit(sk)
- 2. c <- hash(pk, w, m)
- 3. z <- P.response(sk, w, c)
- 4. Return sig = (w, c, z)

Verify (pk, m, sig)

- 1. c <- hash(pk, w, m)
- 2. b <- V.verify(pk, w, c, z)

Why is this secure?

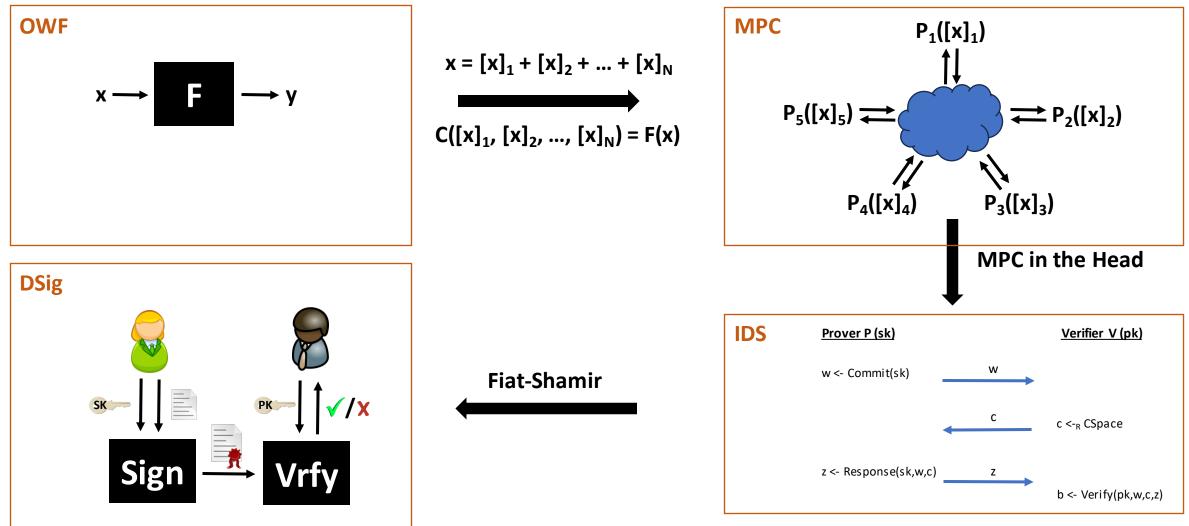
- HVZK -> Forger does not learn anything about the secret (or how to sign a different message) from seeing signatures on chosen messages
 - Proof idea: (Q)ROM proof.
 - Answer queries by running HVZK simulator
 - Program RO to make them consistent (set c <- H(w,m))
- Soundness -> Cannot do better than guessing the challenge per hash query / finding a suitable preimage for given challenge
 - For special case of 3-round commit & open IDS with special soundness doable in QROM, otherwise complicated (massive loss, hard proof)
 - If the adversary has higher success probability than the soundness error, it must be able to answer for more than one challenge.
 - All openings must be sound
 - Implementing the commitment using a random oracle, we can open all commitments using the random oracle table -> can generate two valid transcripts for different c & extract

SDitH in the QROM

(Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue. SDitH in the QROM. Asiacrypt'23)

- Can turn SDitH IDS into 3 round IDS replacing first challenge by hash of first message (FS but easier proof -> search problem)
- Get a scheme with query-bounded special soundness
- Apply FS for 3-round commit & open IDS in QROM

Summary



Conclusion

- MPCitH allows to build signature scheme from OWF
- Works best for functions with mostly linear steps
- Several nice optimizations exist
- Quite competitive:
 - small sk,
 - small pk,
 - medium sigs,
 - fast
 - allows for online / offline sigs

Table 1: Implementation benchmarks of Hypercube-SDitH vs our tweaked scheme for NIST security level I. For the PoW, the parameter $k_{iter} = D$ is used.

Scheme	Aim	Signature Size (bytes)	Parameters				Sign Time (in ms)			Verify Time
			$ \mathbb{F}_{\mathrm{points}} $	t	D	au	Offline	Online	Total	(in ms) Total
Hypercube-SDitH [2]	Short Shorter	8464 6760	2^{24} 2^{24}	5 5	$\frac{8}{12}$	$\begin{array}{c} 17\\12\end{array}$	$\begin{array}{c} 3.83\\ 44.44\end{array}$	$\begin{array}{c} 0.68 \\ 0.60 \end{array}$	$\begin{array}{c} 4.51 \\ 45.04 \end{array}$	$4.16 \\ 42.02$
Ours Vanilla	Short Shorter	8464 6760	2^{24} 2^{24}	$5\\5$	$\frac{8}{12}$	$\begin{array}{c} 17\\12\end{array}$	$\begin{array}{c} 4.45\\ 44.98\end{array}$	$0.049 \\ 0.080$	$\begin{array}{c} 4.50\\ 45.06\end{array}$	4.17 42.02
Ours PoW	Short Shorter	7968 6204	2^{24} 2^{24}	5 5	$\frac{8}{12}$	$\frac{16}{11}$	$\begin{array}{c} 4.20\\ 41.06\end{array}$	$\begin{array}{c} 0.14 \\ 1.49 \end{array}$	$4.34 \\ 42.55$	$4.00 \\ 39.75$

(Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue. SDitH in the QROM. Asiacrypt'23)