Signatures from identification, MPCitH, and more
 Andreas Hülsing
 Eindhoven University of Technology \& SandboxAQ

PQ Signatures

- Signatures vs KEM: Should be easier ... it isn't...
- Approaches:

1. Hash \& Sign

- Full Domain Hash (FDH) with Trapdoor OWP: RSA-PSS, MAYO, UOV,...
- FDH with Preimage-sampleable TDF: Falcon
- Hash-based signatures

2. Signatures from identification:

- Fiat-Shamir (FS): (EC)DSA, Schnorr, ...
- FS with aborts: Dilithium
- FS + MPC in the Head (MPCitH): Picnic, Biscuit, MIRA, MiRitH, MQOM, PERK, RYDE, SDith, AIMer, ...

Syndrome Decoding in the Head (FJR22)

- Code-based signature scheme using MPCitH

- Beats all previous code-based signatures
- Uses unstructured SD problem!

Source:

Thibauld Feneuil, Antoine Joux, and Matthieu Rivain.
"Syndrome Decoding in the Head:
Shorter Signatures from Zero-
Knowledge Proofs". Crypto'22

| Scheme Name | Year | \|sgn| | pk\| | $t_{\text {sgn }}$ | $t_{\text {verif }}$ | Assumption |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wave | 2019 | 2.07 K | 3.2 M | 300 | - | SD over \mathbb{F}_{3} (large weight) $(U, U+V)$-codes indisting. |
| Durandal - I | 2018 | 3.97 K | 14.9 K | 4 | 5 | Rank SD over $\mathbb{F}_{2}{ }^{m}$ |
| Durandal - II | 2018 | 4.90 K | 18.2 K | 5 | 6 | Rank SD over $\mathbb{F}_{2}{ }^{m}$ |
| LESS-FM - I | 2020 | 15.2 K | 9.77 K | - | - | Linear Code Equivalence |
| LESS-FM - II | 2020 | 5.25 K | 206 K | - | - | Perm. Code Equivalence |
| LESS-FM - III | 2020 | 10.39 K | 11.57 K | - | - | Perm. Code Equivalence |
| [GPS22]-256 | 2021 | 24.0 K | 0.11 K | - | - | SD over \mathbb{F}_{256} |
| [GPS22]-1024 | 2021 | 19.8 K | 0.12 K | - | - | SD over \mathbb{F}_{1024} |
| [FJR21] (fast) | 2021 | 22.6 K | 0.09 K | 13 | 12 | SD over \mathbb{F}_{2} |
| [FJR21] (short) | 2021 | 16.0 K | 0.09 K | 62 | 57 | SD over \mathbb{F}_{2} |
| [BGKM22] - Sig1 | 2022 | 23.7 K | 0.1 K | - | - | SD over \mathbb{F}_{2} |
| [BGKM22] - Sig2 | 2022 | 20.6 K | 0.2 K | - | - | (QC)SD over \mathbb{F}_{2} |
| Our scheme - Var1f | 2022 | 15.6 K | 0.09 K | - | - | SD over \mathbb{F}_{2} |
| Our scheme - Var1s | 2022 | 10.9 K | 0.09 K | - | - | SD over \mathbb{F}_{2} |
| Our scheme - Var2f | 2022 | 17.0 K | 0.09 K | 13 | 13 | SD over \mathbb{F}_{2} |
| Our scheme - Var2s | 2022 | 11.8 K | 0.09 K | 64 | 61 | SD over \mathbb{F}_{2} |
| Our scheme - Var3f | 2022 | 11.5 K | 0.14 K | 6 | 6 | SD over \mathbb{F}_{256} |
| Our scheme - Var3s | 2022 | 8.26 K | 0.14 K | 30 | 27 | SD over \mathbb{F}_{256} |

[^0]
Outline

MPC in the Head

IDS	Prover P (sk)		Verifier V (pk)
	w <- Commit(sk)	w	
		c	c <-R CSpace
	z <- Response(sk,w,c)	z	
			$\mathrm{b}<-\operatorname{Verify}(\mathrm{pk}, \mathrm{w}, \mathrm{c}, \mathrm{z})$

Outline

MPC in the Head

OWF

- AES (FEAST)

- LowMC (Picnic)
- AIM (AIMer)
- Polynomial arithmetic \& evaluation (SDitH)
- MQ equation system (Biscuit)

Low multiplicative depth is an advantage!

(secure) Multi-Party Computation

MPC

Allows N parties $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{N}}$ with inputs $\mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}$ to jointly compute a function $F\left(x_{1}, \ldots, x_{N}\right)=y$ such that

- all parties learn the outcome y
- but nothing beyond that

Example: Price negotiations

Buyer \& Seller compute if they can agree on price X

- Logical AND of "willingness"
- If you do not agree, you do not learn the other party's decision!
- Prevents pushing up / down to limit of other party

MPC

Allows N parties $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{N}}$ with inputs $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}$ to jointly compute a function $F\left(x_{1}, \ldots, x_{N}\right)=y$ such that

- all parties learn the outcome y
- but nothing beyond that

We additionally need:

- Correctness: If all parties are honest, the result is correct
- N -1 private: If $\mathrm{N}-1$ parties collaborate, they can still not learn anything about the input of the last party beyond what can be derived from $F\left(x_{1}, \ldots, x_{n}\right)=y$
- Broadcast communication: All messages are broadcasted

(additive) Secret Sharing Scheme (SSS)

Split $\mathrm{x}=[\mathrm{x}]_{1}+[\mathrm{x}]_{2}+\ldots+[\mathrm{x}]_{N}$ with secret shares $[\mathrm{x}]_{\mathrm{i}}$ in F_{q}

- Given all but one share x is information theoretically hidden!

MPC for additive SSS

Split $\mathrm{x}=[\mathrm{x}]_{1}+[\mathrm{x}]_{2}+\ldots+[\mathrm{x}]_{N}$ with secret shares $[\mathrm{x}]_{\mathrm{i}}$ in F_{q}
Party i holds share $[x]_{i}$ of value x.
Operations:

- Adding shared values ([x] + [y]): Parties locally add shares

$$
\Sigma\left([x]_{i}+[y]_{i}\right)=\Sigma[x]_{i}+\Sigma[y]_{i}=x+y
$$

- Adding constant ($[\mathrm{x}]+\mathrm{c}$): P1 computes $[\mathrm{x}]_{1}+\mathrm{c}$, all others do nothing $[\mathrm{x}]_{1}+\mathrm{c}+[\mathrm{x}]_{2}+\ldots+[\mathrm{x}]_{N}=\Sigma[\mathrm{x}]_{\mathrm{i}}+\mathrm{c}=\mathrm{x}+\mathrm{c}$
- Multiplication by constant ([x] • c): All parties locally compute $[x]_{i} \cdot c$ $[\mathrm{x}]_{1} \cdot \mathrm{c}+[\mathrm{x}]_{2} \cdot \mathrm{c}+\ldots+[\mathrm{x}]_{\mathrm{N}} \cdot \mathrm{c}=\left([\mathrm{x}]_{1}+[\mathrm{x}]_{2}+\ldots+[\mathrm{x}]_{N}\right) \cdot \mathrm{c}=\mathrm{x} \cdot \mathrm{c}$

MPC for additive SSS

Split $\mathrm{x}=[\mathrm{x}]_{1}+[\mathrm{x}]_{2}+\ldots+[\mathrm{x}]_{N}$ with secret shares $[\mathrm{x}]_{\mathrm{i}}$ in F_{q}
Party i holds share $[x]_{i}$ of value x.
Operations:

- Adding shared values ([x] + [y]): Parties locally add shares

$$
\Sigma\left([x]_{i}+[y]_{i}\right)=\Sigma[x]_{i}+\Sigma[y]_{i}=x+y
$$

- Adding constant ($[\mathrm{x}]+\mathrm{c}$): P1 computes $[\mathrm{x}]_{1}+\mathrm{c}$, all others do nothing $[\mathrm{x}]_{1}+\mathrm{c}+[\mathrm{x}]_{2}+\ldots+[\mathrm{x}]_{N}=\sum[\mathrm{x}]_{\mathrm{i}}+\mathrm{c}=\mathrm{x}+\mathrm{c}$
- Multiplication by constant ([x] • c): All parties locally compute $[x]_{i} \cdot c$ $[\mathrm{x}]_{1} \cdot \mathrm{c}+[\mathrm{x}]_{2} \cdot \mathrm{c}+\ldots+[\mathrm{x}]_{\mathrm{N}} \cdot \mathrm{c}=\left([\mathrm{x}]_{1}+[\mathrm{x}]_{2}+\ldots+[\mathrm{x}]_{N}\right) \cdot \mathrm{c}=\mathrm{x} \cdot \mathrm{c}$

Share multiplication

- Conventional:

- (Katz, Kolesnikov, Wang. "Improved non-interactive zero knowledge with applications to post-quantum signatures". CCS 2018)
- All parties know one share of both inputs
- After protocol, all parties know a share of the output

- Modern:

- (Lindell, Nof. "A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority". CCS 2017)
- (Baum, Nof. "Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to LatticeBased Cryptography". PKC 2020)
- All parties know a share of both inputs and the output
- Protocol proves that output is a sharing of product of input

Verifying multiplication

Parties need random triple [a], [b], [c], with $a b=c$, to verify $[x],[y],[z]$, with $x y=z$

- Take random element e in F_{q}
- Parties locally set $[\alpha]=\mathrm{e}[\mathrm{x}]+[\mathrm{a}]$ and $[\beta]=[\mathrm{y}]+[\mathrm{b}]$
- Parties broadcast $[\alpha]$ and $[\beta]$ shares to open α and β
- Parties locally set $[\mathrm{v}]=\mathrm{e}[\mathrm{z}]-[\mathrm{c}]+\alpha \cdot[\mathrm{b}]+\beta \cdot[\mathrm{a}]-\alpha \cdot \beta$ (note that last summand is only subtracted by P_{1})
- Parties broadcast [v] shares to open v and accept if $\mathrm{v}=0$.

Verifying multiplication - Correctness

$$
\text { -v } \begin{aligned}
& =e \cdot z-c+\alpha \cdot b+\beta \cdot a-\alpha \cdot \beta \\
& =e \cdot x y-a b+(e \cdot x+a) b+(y+b) a-(e \cdot x+a)(y+b) \\
& =e x y-a b+e x b+a b+y a+b a-e x y-e x b-a y-a b=0
\end{aligned}
$$

Verifying multiplication - Soundness

$$
\begin{aligned}
\bullet v & =e \cdot z-c+\alpha \cdot b+\beta \cdot a-\alpha \cdot \beta \\
& =e \cdot x y-a b+(e \cdot x+a) b+(y+b) a-(e \cdot x+a)(y+b) \\
& =e x y-a b+e x b+a b+y a+b a-e x y-e x b-a y-a b=0
\end{aligned}
$$

Verifying multiplication - Soundness

- Let $\mathrm{z}=\mathrm{xy}+\mathrm{d}_{\mathrm{z}}$ and $\mathrm{c}=\mathrm{ab}+\mathrm{d}_{\mathrm{c}}$
- $v=e \cdot z-c+\alpha \cdot b+\beta \cdot a-\alpha \cdot \beta$

$$
\begin{aligned}
& =e \cdot x y+e d_{z}-a b-d_{c}+(e \cdot x+a) b+(y+b) a-(e \cdot x+a)(y+b) \\
& =0+e d_{z}-d_{c}
\end{aligned}
$$

Verifying multiplication - Soundness

Claim: If $d_{z} \neq 0$ or $d_{c} \neq 0$ then $v=0$ with probability at most $1 /\left|F_{q}\right|$ Proof: Recall $v=e d_{z}-d_{c}$

- Case $d_{z}=0 \& d_{c} \neq 0$:

$$
v=e d_{z}-d_{c}=-d_{c} \neq 0
$$

Verifying multiplication - Soundness

Claim: If $d_{z} \neq 0$ or $d_{c} \neq 0$ then $v=0$ with probability at most $1 /\left|F_{q}\right|$ Proof: Recall $v=e_{z}-d_{c}$

- Case $d_{z}=0 \& d_{c} \neq 0$:

$$
v=e d_{z}-d_{c}=-d_{c} \neq 0
$$

- Case $d_{z} \neq 0$ \& $d_{c} \neq 0$:

$$
v=0 \Leftrightarrow d_{c}=e d_{z} \ll d_{c} d_{z}^{-1}=e \quad\left(\text { prob } 1 /\left|F_{q}\right|\right)
$$

Verifying multiplication - Soundness

Claim: If $d_{z} \neq 0$ or $d_{c} \neq 0$ then $v=0$ with probability at most $1 /\left|F_{q}\right|$ Proof: Recall $v=e_{z}-d_{c}$

- Case $d_{z}=0 \& d_{c} \neq 0$:

$$
v=e d_{z}-d_{c}=-d_{c} \neq 0
$$

- Case $d_{z} \neq 0 \& d_{c} \neq 0$:

$$
v=0 \Leftrightarrow d_{c}=e d_{z} \ll d c d_{z}^{-1}=e \quad\left(\text { prob } 1 /\left|F_{q}\right|\right)
$$

- Case $d_{z} \neq 0 \& d_{c}=0$:

$$
v=e d_{z}-d_{c}=e d z \Rightarrow v=0 \text { iff } e=0\left(\text { prob } 1 /\left|F_{q}\right|\right)
$$

Function to circuit - Examples

Evaluating shared polynomial $[P]=\Sigma\left[p_{i}\right] x^{i}$ at public point r :

- Locally: $[P](r)=\Sigma\left[p_{i}\right] r^{i}=[y]$
- No interaction
- Single secret shared value as outcome

Evaluating product of shared polynomials [P], [S] at public point r :

- Requires knowledge of result [z]
- Locally: $[P](r)=\Sigma\left[p_{i}\right] r^{i}=[y], \quad[S](r)=\Sigma\left[s_{i}\right] r^{i}=[x]$
- Run verify for $[\mathrm{x}] \cdot[\mathrm{y}]=[\mathrm{z}]$
- Single broadcast interaction + final opening

Function to circuit: SDitH (FJR'22)

- Turn Syndrome Decoding function into MPC

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a uniformly random parity check matrix $\mathbf{H} \in \mathbb{F}_{S D}^{(m-k) \times m}$, and binary vector $\mathbf{x} \in \mathbb{F}_{S D}^{m}$ with $w t(\mathbf{x})=\omega$. Let syndrome $\mathbf{y}=\mathbf{H x}$. Then given only \mathbf{H}, \mathbf{y}, it is difficult to find $\mathbf{x}^{\prime} \in \mathbb{F}_{S D}^{m}$ such that $\mathbf{H x}^{\prime}=\mathbf{y}$ with $w t\left(\mathbf{x}^{\prime}\right) \leq \omega$.

Function to circuit: SDitH (FJR'22)

- Turn Syndrome Decoding function into MPC

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a uniformly random parity check matrix $\mathbf{H} \in \mathbb{F}_{S D}^{(m-k) \times m}$, and binary vector $\mathbf{x} \in \mathbb{F}_{S D}^{m}$ with $w t(\mathbf{x})=\omega$. Let syndrome $\mathbf{y}=\mathbf{H x}$. Then given only \mathbf{H}, \mathbf{y}, it is difficult to find $\mathbf{x}^{\prime} \in \mathbb{F}_{S D}^{m}$ such that $\mathbf{H x}^{\prime}=\mathbf{y}$ with $w t\left(\mathbf{x}^{\prime}\right) \leq \omega$.

- Advantage: Linear function.

Function to circuit: SDitH (FJR'22)

- Turn Syndrome Decoding function into MPC

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a uniformly random parity check matrix $\mathbf{H} \in \mathbb{F}_{S D}^{(m-k) \times m}$, and binary vector $\mathbf{x} \in \mathbb{F}_{S D}^{m}$ with $w t(\mathbf{x})=\omega$. Let syndrome $\mathbf{y}=\mathbf{H x}$. Then given only \mathbf{H}, \mathbf{y}, it is difficult to find $\mathbf{x}^{\prime} \in \mathbb{F}_{S D}^{m}$ such that $\mathbf{H x}^{\prime}=\mathbf{y}$ with $w t\left(\mathbf{x}^{\prime}\right) \leq \omega$.

- Advantage: Linear function.
- Disadvantage: Weight check.

SDitH - Implicit Equation Check

- Use H in standard form: $H=\left(H^{\prime} \mid I_{m-k}\right)$
- Can write $x=\left(x_{A} \mid x_{B}\right)$ with $y=H^{\prime} x_{A}+x_{B}$
- Define sk = x_{A}
- Compute x via $x_{B}=y-H^{\prime} x_{A}$
=> guarantees x fulfills $y=H x$

SDitH - Weight check

- Compute x from x_{A}, H, and y
- Derive a polynomial S from x
- Generate polys Q, P, and public F such that

$$
S Q-P F=0 \text { if } w t(x) \leq \omega .
$$

- Select t random points r_{i} and verify that

$$
S\left(r_{i}\right) Q\left(r_{i}\right)=P F\left(r_{i}\right) \text { for } 0<i \leq t .
$$

SDitH - MPC circuit

- Compute $[x]$ from $\left[x_{A}\right], H$, and y (only linear ops)
- Derive share of polynomial [S] from [x] (only linear ops)
- Generate secret shared polys [Q], [P], and public F such that

$$
[S][Q]-[P] F=0 \text { if } w t(x) \leq \omega
$$

- Get t random points r_{i}, t random masks e_{i}, and run verification for

$$
[\mathrm{S}]\left(\mathrm{r}_{\mathrm{i}}\right)[\mathrm{Q}]\left(\mathrm{r}_{\mathrm{i}}\right)=[\mathrm{P}] \mathrm{F}\left(\mathrm{r}_{\mathrm{i}}\right) \text { using } \mathrm{e}_{\mathrm{i}}
$$

for $0<\mathrm{i} \leq \mathrm{t}$.

```
IDS
\(\qquad\)
```

c
\qquad

Identification Schemes

Identification Schemes (IDS) / Zero-knowledge proofs (ZKP)

- Invented by Shafi Goldwasser, Silvio Micali and Charles Rackoff in 1985
- Interactive proof systems
- Prove knowledge of a secret without revealing any information about the secret
- [For people that like classifications: The IDS we discuss are actually Honest-Verifier Zero-Knowledge Arguments of Knowledge]

Identification schemes (3-round, public coin)

Prover P (sk)

w <- Commit(sk) \qquad
c
z <- Response(sk,w,c) \qquad

$$
b<-\operatorname{Verify}(p k, w, c, z)
$$

Also called a "Sigma Protocol"

The case of Sudoku

- A: I have a nice Sudoku for you
- B: You are sure this is solvable?
- A: Sure!
- B: Prove it!
- A: Ok...

The case of Sudoku

- So how can Alice prove that a solution exists without making the Sudoku easier (a.k.a. leaking information)?

The case of Sudoku

- Apply random permutation to solution:

1	2	3	4	5	6	7	8	9
3	2	7	1	6	9	4	5	8

| 5 | 3 | 4 | 6 | 7 | 8 | 9 | 1 | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 7 | 2 | 1 | 9 | 5 | | 3 | 4 | 8 |
| 1 | 9 | 8 | 3 | 4 | 2 | 5 | 6 | 7 | |
| 8 | 5 | 9 | 7 | 6 | 1 | 4 | 2 | 3 | |
| 4 | 2 | 6 | 8 | 5 | 3 | 7 | 9 | 1 | |
| 7 | 1 | 3 | 9 | 2 | 4 | 8 | 5 | 6 | |
| 9 | 6 | 1 | 5 | 3 | 7 | | 2 | 8 | 4 |
| 2 | 8 | 7 | 4 | 1 | 9 | | 6 | 3 | 5 |
| 3 | 4 | 5 | 2 | 8 | 6 | 1 | 7 | 9 | |

| 6 | 7 | 1 | 9 | 4 | 5 | 8 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 4 | 2 | 3 | 8 | 6 | 7 | 1 | 5 |
| 3 | 8 | 5 | 7 | 1 | 2 | 6 | 9 | 4 |
| 5 | 6 | 8 | 4 | 9 | 3 | 1 | 2 | 7 |
| 1 | 2 | 9 | 5 | 6 | 7 | 4 | 8 | 3 |
| 4 | 3 | 7 | 8 | 2 | 1 | 5 | 6 | 9 |
| 8 | 9 | 3 | 6 | 7 | 4 | 2 | 5 | 1 |
| 2 | 5 | 4 | 1 | 3 | 8 | 9 | 7 | 6 |
| 7 | 1 | 6 | 2 | 5 | 9 | 3 | 4 | 8 |

The case of Sudoku

- Prepare scratch card:

The case of Sudoku

Show scratch card to Bob and allow him to ask Alice to do one out of the following:

- Scratch off a row
- Scratch off a column
- Scratch off a square
- Scratch off original Sudoku

The case of Sudoku

What does Bob gain? (Soundness)

- If scratching reveals inconsistency: Alice cheated!
- If scratching reveals consistent values: Alice might have cheated...

But Bob gains some confidence in Alice
 knowing a solution.

The case of Sudoku

- Bob choose from 28 possible "challenges"
- If Alice is cheating she gets caught with prob. $\geq \frac{1}{28}$
- Cheating Alice has chance of $\leq \frac{27}{28}$ to succeed
- Repeating protocol n times means Alice's cheating probability goes down to

$$
\left(\frac{27}{28}\right)^{n} \approx\left(\frac{1}{2}\right)^{0.05 n}
$$

- When $n=2500$, Alice caught with 0.99 probability.

The case of Sudoku

(Honest-Verifier) Zero-knowledge:

- We want to show that (honest) Bob does not learn anything about the secret (i.e., the Sudoku solution)
- We will prove: Everything he learns, he could have generated himself.
- Can be proved showing that Bob (without knowing the secret) could have generated valid protocol transcripts that are indistinguishable from those obtained by communicating with Alice.

The case of Sudoku

Proving zero-knowledge:

- Trick: When Bob generates transcripts, he can first select the challenge, then produce the scratch card!
- For challenge row, column, or square: Just put random permutation of 1... 9.
- For challenge original Sudoku: Just put random permutation of the used numbers.
\Rightarrow Follows exactly same distribution as what Alice would have put there!

The case of Sudoku - Implications

Yato 2003:
",Solvability of $n \times n$ Sudoku is NP-complete"

- We can use this proof for any other problem in NP
- Just transform problem instance into Sudoku instance and run ZKP for that instance.

Identification schemes (3-round, public coin)

Prover P (sk)

w <- Commit(sk) \qquad
c
z <- Response(sk,w,c) \qquad

$$
b<- \text { Verify }(p k, w, c, z)
$$

Verifier V (pk)

```
c <- }\mp@subsup{R}{R}{}\mathrm{ CSpace
```

```
c <- }\mp@subsup{R}{R}{}\mathrm{ CSpace
```


Security Properties

- Soundness: A prover that does not know the secret will get caught with high probability $(1-e)$ where e is called soundness error
- Special soundness: There exists an efficient extractor E that given two transcripts with same w but different c, extracts sk.
- Honest verifier zero-knowledge (HVZK): There exists an efficient simulator S that, given only the public key, outputs transcripts which are indistinguishable from transcripts of honest protocol runs

Identification schemes(5-round, public coin)

Prover P (sk)

w <- Commit(sk)

Verifier V (pk)

```
                            W
```


$$
\mathrm{c}_{1}<-_{\mathrm{R}} \text { CSpace }_{1}
$$

$$
\mathrm{z}_{1}<- \text { Response(sk,w, } \mathrm{c}_{1} \text {) }
$$

\qquad
\qquad
$z_{2}<-$ Response(sk, w, $\mathrm{c}_{1}, \mathrm{z}_{1}, \mathrm{c}_{2}$) \qquad Z
$\mathrm{C}_{2}<{ }_{\mathrm{R}} \mathrm{CSpace}_{2}$

$$
\mathrm{b}<-\operatorname{Verify}\left(\mathrm{pk}, \mathrm{w}, \mathrm{c}_{1}, \mathrm{z}_{1}, \mathrm{c}_{2}, \mathrm{z}_{2}\right)
$$

More notes on IDS

- We can have $2 n+1$ round IDS for $n \geq 1$
- We usually require that w has high entropy (hard to predict)
- Commitment-recoverable IDS:
- There exist function $\operatorname{Recv}(\mathrm{c}, \mathrm{z})$-> w
- We later need negligible soundness error
- Achieved via parallel composition

IDS	Prover P (sk)		Verifier V (pk)
	w <- Commit(sk)	$\xrightarrow{\mathrm{w}}$	
		c	c <-R CSpace
	z <- Response(sk,w,c)	z	
			$\mathrm{b}<-\operatorname{Verify}(\mathrm{pk}, \mathrm{w}, \mathrm{c}, \mathrm{z}$)

MPC in the Head

Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai.
"Zero-knowledge from secure multiparty computation". STOC'07

MPCitH for PQ-identification

(Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. "Zero-knowledge from secure multiparty computation".STOC'07)

Given OWF F: X -> Y
Create identification scheme IDS that proves knowledge of x such that

$$
F(x)=y
$$

for given y in (honest-verifier) zero-knowledge.
$\mathrm{sk}=\mathrm{x}, \mathrm{pk}=\mathrm{y}[\mathrm{F}]$

High-level idea

Prover P (sk)

$\mathrm{w}<-\operatorname{Commit}([\mathrm{x}])$,

Verifier V (pk)

w

C

$$
c<-_{R}\{1, \ldots, 5\}
$$

Check consistency of all opened parties \& verify result

Security - Soundness

Prover P (sk)

Verifier V (pk)

\qquad
w <- Commit([x$]$),

$$
\begin{array}{lll}
& \mathrm{C} & \mathrm{C} \ll_{\mathrm{R}}\{1, \ldots, 5\} \\
\mathrm{z}<-\mathrm{P}_{\mathrm{i}} \text { forall } \mathrm{i} \neq \mathrm{C} \quad \mathrm{Z} & \begin{array}{l}
\text { Check consistency of all opened parties \& } \\
\text { verify result }
\end{array}
\end{array}
$$

Security - Soundness

Prover P (sk)

Verifier V (pk)

$\mathrm{w}<-\operatorname{Commit}([\mathrm{x}])$,
\qquad
$c=4$
$\mathrm{C}<_{-{ }_{\text {R }}}\{1, \ldots, 5\}$
$z<-P_{i}$ for $i \neq 4$
Z
Check consistency of all opened parties \& verify result

Security - Soundness

Prover P (sk)

Verifier V (pk)

$\mathrm{w}<-\operatorname{Commit}([\mathrm{x}])$,
\qquad
W

$$
C \neq 4
$$

$$
c<-_{R}\{1, \ldots, 5\}
$$

$z<-P_{i}$ forall $i \neq c$
Z
Check consistency of all opened parties \& verify result

Security - Soundness

Soundness

- Only if $\mathrm{c}=\mathrm{i}_{\mathrm{A}}$, A will go undetected!
- Soundness error = $1 / \mathrm{N}$ for N parties

Special soundness:

- Valid openings for $\mathrm{c}_{1} \neq \mathrm{c}_{2}$ reveal all P_{i}
- => Can recombine [x]

Security - HVZK

- Simulator samples random c first
- Generates $\mathrm{P}_{\mathrm{i}}, \mathrm{i} \neq \mathrm{c}$, honestly, with random inputs
- Choses communication of P_{c} such that result is correct
- Computes all other parts following protocol

Real life...

- We need the random e for multiplication check! (and for SDith also the points r)
- Add a round trip ...

Commit

- Share secret $[x]$, generate required number (say t) of multiplication triples ([a],[b],[c])
- Commit to all the shares of one party together.
- Send commitments to V

Challenge 1

- Send t random values e_{i} for multiplication verification (SDitH: Also t random points r_{i} to evaluate polynomials on)

Response 1

- Run MPC protocol using commited shares and e_{i}
- Assemble and send communication of all multiplication verifications

Challenge 2

- Send random c within $\{1, \ldots, \mathrm{~N}\}$

Response 2

- Send all shares of each party $\mathrm{P}_{\mathrm{i}}, \mathrm{i} \neq \mathrm{C}$

Verify

- Run MPC protocol with "opened parties" using communications of unopened party
- Check that all communications are consistent
- Check that final result is correct (usually, C is built such that result is 0)

Impact on security

- HVZK: None - just sample all challenges in advance
- Soundness: Two ways of cheating -> guessing an e and manipulating the multiplication test or guessing the second challenge.
- Soundness error becomes $1 /\left|F_{q}\right|+1 / N$

Optimizations

- Generate secret shares using PRG, e.g.:
$\mathrm{x}=[\mathrm{x}]_{1}+[\mathrm{x}]_{2}+\ldots+[\mathrm{x}]_{\mathrm{N}}+\Delta$ for $[\mathrm{x}]_{\mathrm{i}}=\operatorname{PRG}\left(\mathrm{s}_{\mathrm{i}}\right)$ and $\Delta=\mathrm{x}-\Sigma[\mathrm{x}]_{\text {| }}$
- requires to send the Δ in first communication!
- Only need to commit to and later open s_{i} which are shorter than $[\mathrm{x}]_{\mathrm{i}}$
- Generate s_{i} using TreePRG
- Allows to open all but one leaf publishing log N seeds in place of N !
- Hash commitment message and send unopened commitments in last message: $w^{\prime}=H(w)$
- Commitment-recoverable IDS
- MUCH shorter w, only slightly longer z

Hypercube verification

Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, and Dongze Yue "The Return of the SDitH". EUROCRYPT'23

DSig

IDS	Prover P (sk)		Verifier V (pk)
	w <- Commit(sk)	w	
		c	c <-R CSpace
	z <-Response(sk,w,c)	z	
			$\mathrm{b}<-\operatorname{Verify}(\mathrm{pk}, \mathrm{w}, \mathrm{c}, \mathrm{z})$

Fiat-Shamir

Fiat-Shamir Signatures

Sign (sk,m)

1. $\mathrm{w}<-\mathrm{P} . \mathrm{commit}(\mathrm{sk})$
2. $c<-\operatorname{hash}(p k, w, m)$
3. z <- P.response(sk, w, c)
4. Return $\operatorname{sig}=(w, c, z)$

Verify (pk, m, sig)

1. $c<-\operatorname{hash}(p k, w, m)$
2. $b<-\operatorname{V.verify}(p k, w, c, z)$

Why is this secure?

- HVZK -> Forger does not learn anything about the secret (or how to sign a different message) from seeing signatures on chosen messages
- Proof idea: (Q)ROM proof.
- Answer queries by running HVZK simulator
- Program RO to make them consistent (set c <-H(w,m))
- Soundness -> Cannot do better than guessing the challenge per hash query / finding a suitable preimage for given challenge
- For special case of 3-round commit \& open IDS with special soundness doable in QROM, otherwise complicated (massive loss, hard proof)
- If the adversary has higher success probability than the soundness error, it must be able to answer for more than one challenge.
- All openings must be sound
- Implementing the commitment using a random oracle, we can open all commitments using the random oracle table -> can generate two valid transcripts for different c \& extract

SDitH in the QROM

(Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue. SDitH in the QROM. Asiacrypt'23)

- Can turn SDitH IDS into 3 round IDS replacing first challenge by hash of first message (FS but easier proof -> search problem)
- Get a scheme with query-bounded special soundness
- Apply FS for 3-round commit \& open IDS in QROM

Summary

Fiat-Shamir

MPC in the Head

Conclusion

- MPCitH allows to build signature scheme from OWF
- Works best for functions with mostly linear steps
- Several nice optimizations exist
- Quite competitive:
- small sk,
- small pk,
- medium sigs,
- fast
- allows for online / offline sigs

Table 1: Implementation benchmarks of Hypercube-SDitH vs our tweaked scheme for NIST security level I. For the PoW, the parameter $k_{i t e r}=D$ is used.

Scheme	Aim	Signature Size (bytes)	Parameters				Sign Time (in ms)			Verify Time (in ms) Total
			$\left\|\mathbb{F}_{\text {points }}\right\|$	t	D	τ	Offline	Online	Total	
Hypercube-SDitH [2]	Short	8464	2^{24}	5	8	17	3.83	0.68	4.51	4.16
	Shorter	6760	2^{24}	5	12	12	44.44	0.60	45.04	42.02
Ours Vanilla	Short	8464	2^{24}	5	8	17	4.45	0.049	4.50	4.17
	Shorter	6760	2^{24}	5	12	12	44.98	0.080	45.06	42.02
Ours PoW	Short	7968	2^{24}	5	8	16	4.20	0.14	4.34	4.00
	Shorter	6204	2^{24}	5	12	11	41.06	1.49	42.55	39.75

[^1]
[^0]: Table 6. Comparison of our scheme with signatures from the literature (128-bit security). The sizes are in bytes and the timings are in milliseconds. Reported timings are from the original publications: Wave has been benchmarked on a 3.5 Ghz Intel Xeon E3-1240 v5, Dutrasddh bli ds.g. Getz Intel Core i5-7440HQ, while [FJR21] and our scheme on a 3.8 GHz Intel Core i7.

[^1]: (Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue. SDitH in the QROM. Asiacrypt'23)

