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Why do cyber criminals focus on 
implementation bugs, phishing & 
co?

2https://huelsing.net



Because cryptography keeps 
them from simply taking over 
your communication!
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And if 
crypto fails?
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Background:
Cryptography
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Secret key encryption (SKE)
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Message authentication (MAC)
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plaintext

Key k Key k

MAC.Tag MAC.Vrfyplaintext



How to build secret key crypto?

• Random function sufficient (we need one-wayness)

• Attacks ≈ unstructured search

• How to build random behaving function?
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Engineering*

* Disclaimer: Massive simplification

Spoiler: 
Killed by quantum? Not that we know.

(but weakened)*



How does Bob 
learn shared key k?
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Public key encryption (PKE)

01/07/2019 https://huelsing.net 10

plaintext



⚫⬧

⬧

⚫⬧

⚫⬧

⚫

plaintext

Bob’s pk Bob’s sk

PKE.Enc PKE.Dec



Key Exchange (KEX)
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Alice’s pkKEX KEXAlice’s sk

Bob’s pk

Bob’s sk

=



Digital Signature (DSig)

01/07/2019 https://huelsing.net 12

plaintext

Alice’s pk

DSig.Sign DSig.Vrfyplaintext

Alice’s sk



Communication security (simplified)
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Hi

pk, Cert(pk belongs to shop)

PKC to establish shared secret sk

SKC secured communication using sk 



How to build PKC
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(Computationally) 

hard problem
RSA

DL

QR DDH

PKC Scheme
RSA-
OAEP

ECDSA DH-
KE



The Quantum Threat
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Shor‘s algorithm (1994)

• Quantum computers can do FFT 
very efficiently

• Can be used to find period of 
a function

• This can be exploited to factor 
efficiently (RSA)

• Shor also shows how to solve 
discrete log efficiently 
(DSA, DH, ECDSA, ECDH)
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How to build PKC
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(Computationally) 

hard problem
RSA

DL

QR DDH

PKC Scheme
RSA-
OAEP

ECDSA DH-
KE



Communication security (simplified)
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Hi

pk, Cert(pk belongs to shop)

PKC to establish shared secret sk

SKC secured communication using sk 



Why care today

• EU launched a one billion 
Euro project on quantum 
technologies

• Similar range is spent in 
China 

• US administration passed 
a bill on spending $1.275 
billion US dollar on 
quantum computing 
research

• Google, IBM, Microsoft, 
Alibaba, and others run 
their own research 
programs.
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It‘s a question of risk assessment
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Real world cryptography development

Develop systems Analyze security
Implement 

systems

Analyze 
implementation 

security

Select best 
systems and 
standardize 

them

Integrate 
systems into 
products & 
protocols

Role out secure 
products
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Who would store all encrypted data traffic? 
That must be expensive!
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Long-lived systems

• Development time easily 10+ years

• Lifetime easily 10+ years

• At least make sure you got a 
secure update channel!
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Solution to the problem caused by 
Shor?
Post-quantum cryptography
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How to build PKC
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(Computationally) 

hard problem
RSA

DL

QR DDH

PKC Scheme
RSA-
OAEP

ECDSA DH-
KE

(computationally) 

Quantum-hard 
Problem



Quantum-hard problems

4/24/2024 https://huelsing.net 26

...

1

3

14232

2

32

34121

2

11

=

++++=

+++=

y

xxxxxxy

xxxxxxy

Lattice-based: SVP / CVP Hash-based: CR / SPR / ...

Code-based: SD Multivariate: MQ



NIST Competition
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“We see our role as managing a process of achieving community consensus in a 
transparent and timely manner” NIST’s Dustin Moody 2018



Status of the competition

• Nov 2017: 82 submissions collected

• Dec 2017: 69 “complete & proper” proposals published
• -> Starts round 1 (of 2 or 3 rounds)

• Jan 2019: 26 proposals selected for 2nd round.
• 17 KEM, 9 Signature

• July 2020: 7 Finalists and 8 Alternate candidates selected for 
3rd round
• 4+5 KEM, 3+3 DSS

• July 2022 – End of 3rd round – Winners announced

• 2022-2023 – Release draft standards and call for public comments
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Selected Algorithms 

• KEM:
oCrystals-Kyber (ML-KEM)

• Sig:
oCrystals-Dilithium (ML-DSA)

o Falcon (FN-DSA)

o SPHINCS+ (SLH-DSA)

Dutch (Expads) Success!
• Kyber led by Peter Schwabe (then RU), 

with team member Leo Ducas (CWI)
• Dilithium with team members Schwabe (then RU) and Ducas 

(CWI)
• SPHINCS+ led by Andreas Hülsing (TU/e) 

with team members Daniel J. Bernstein (then 
TU/e), Tanja Lange (TU/e), Ruben Niederhagen (then 
TU/e), Joost Rijneveld(then RU), Peter Schwabe (then RU), Bas 
Westerbaan (Cloudflare)
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This is what 
we  are 
actually 
interested 
in!

02/09/2021
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Challenges
(Along the example of PQWireGuard 
[Hülsing, Ning, Schwabe, Weber, Zimmermann. S&P 2021])
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Challenges

1. Size

2. Speed

3. Interface mismatch (KEM ≠ NIKE)

4. Security models

5. Standardizing the new protocols

6. Hybrids
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Challenge 1: Size

• IPv6 Maximum Transmission Unit (MTU) = 1280 bytes 
= 1232 bytes + headers.

• Bigger packets risk fragmentation 
• complicates state-machine 

• can allow DoS
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Sec Lvl Kyber
PK                 Ct

Saber
PK                 Ct

NTRU
PK                 Ct

McEliece
PK                 Ct

I 800 768 672 736 699 699 261.120 128

III 1.184 1.088 992 1.088 930 930 524.160 188

V 1.568 1.568 1.312 1.472 1.230 1.230 1.044.992 240
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Sec Lvl Kyber
PK                 Ct

Saber
PK                 Ct

NTRU
PK                 Ct

McEliece
PK                 Ct

I 800 768 672 736 699 699 261.120 128

III 1.184 1.088 992 1.088 930 930 524.160 188

V 1.568 1.568 1.312 1.472 1.230 1.230 1.044.992 240

PQWireGuard:
Some MACs + pk + ct /
Some MACs + 2 ct

Solution:
McEliece + 

passively secure Saber

Similar situation for 
signatures!



Challenge 2: Speed

• Often we have trade-offs speed vs size.
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Sign/s for SPHINCS+
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Source: The open Quantum Safe Project, https://openquantumsafe.org/benchmarking/visualization/speed_sig.html

SHA2 SHAKE

128f

128f192f

192f

256f
256f

128s 128s192s 192s256s 256s



Challenge 1+2: Performance

• Performance penalty is noticeable
• Only use PKC where really needed!

• Performance penalty is bigger for signatures
• Only use signatures when needed

02/09/2021 42https://huelsing.net



Challenge 1+2: Performance
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PQWireGuard:
Use KEM for 
authentication



Challenge 3: KEM no NIKE (DH)

• Key transport in TLS 1.3: (EC)DH

• Key transport in WireGuard: ECDH

• Key transport in Noise: (EC)DH

• Key transport in Signal, WhatsApp, 
…: (EC)DH
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NIST will standardize: KEM



Key transport

NIKE
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KEM

A(skA,pkA,pkB)

K = f(skA,pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = f(skB,pkA)
M = Dec(K,C)

C

A(skA,pkA,pkB)

K,ct = Encaps(pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = Decaps(skB,ct)
M = Dec(K1,C)

ct,C



Key transport

NIKE
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Key transport

NIKE
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KEM

A(skA,pkA,pkB)

K = f(skA,pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = f(skB,pkA)
M = Dec(K,C)

C

A(skA,pkA,pkB)

K,ct = Encaps(pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = Decaps(skB,ct)
M = Dec(K1,C)

ct,C

Only A could have 
computed this K!

Anyone could 
have computed 

this K!

I can even already 
mix in ephemeral 

keys!

Can be rescued with 
one more message!



WireGuard vs PQWireGuard
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WireGuard PQWireGuard



Challenge 4: Security models

• When arguing security, 
we have to simplify -> models
• IND-CPA, IND-CCA, EUF-CMA, …

• Sometimes, we can only argue 
security when idealizing (some) 
building blocks -> idealized models
• Random Oracle Model, 

UC-Framework
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quantum security, we 

have to consider 
quantum adversaries!
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When arguing post-
quantum security, we 

have to consider 
quantum adversaries!

Challenging for 
idealized models!

PQWireGuard:
Standard Model
Adoption “easy”



Challenge 5: Standardization

Super important!
(and a lot of work)

But not much different from before.
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Challenge 6: Hybrids

Motivation:

• To achieve compliance

• When using non-conservative schemes

Solutions:

• KEM-Combiners / DSS-Combiners

• Exploiting protocol specifics
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• When using non-conservative schemes

Solutions:

• KEM-Combiners / DSS-Combiners

• Exploiting protocol specifics
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PQWireGuard:
Both options work. 



Bonus challenge: Complicated proofs & 
implementations
Number theoretic schemes have a beautiful simplicity…

… PQC schemes don’t.

• Models get more complicated

• Proofs get more complicated

• Implementations get more complicated
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How to prevent mistakes?

Formal verification!
• Machine checked proofs
• Compiler with guaranteed 

security properties
(see e.g., https://formosa-crypto.org/)

PQWireGuard:
Machine-checked proof 
in symbolic model. 

https://formosa-crypto.org/


Conclusions

• We are not done with the end of the NIST 
competition

• We manage to handle the challenges well 
for “simple” protocols
• We can even get close to previous 

performance if we design new protocols with 
challenges in mind!

• The challenges will get more problematic 
for advanced protocols
• Ratcheting? (Signal, WhatsApp, OTR…)
• Deniable authenticated key exchange? (OTR)
• Tools involving ZKPs, e.g., group signatures, 

anonymous credentials? 
• …
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Resources

4/24/2024 https://huelsing.net 63

• PQC Spring School (2024):
https://pqc-spring-school.nl/

• PQ Summer School (2019): 
http://www.pqcschool.org/

• NIST PQC Standardization Project: 
https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography

https://pqc-spring-school.nl/
http://www.pqcschool.org/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography


Thank you!

Questions?
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Grover‘s algorithm (1996)

• Quantum computers can search 
𝑁 entry DB in Θ( 𝑁)

• Application to symmetric crypto

• Nice: Grover is provably optimal 
(For random function)

• Double security parameter.
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What about QKD?
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Recall:
Communication security (simplified)
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Hi

pk, Cert(pk belongs to shop)

PKC to establish shared secret sk

SKC secured communication using sk 



The problem solved by QKD

Given

• a shared classical secret,

• a physical channel between parties that supports QKD

• compatible QKD devices on both ends of the channel

It is possible to

• generate a longer shared classical secret. 
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“Key growing”
(≠ “Key establishment“)



QS0: Classical security
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01010101110110

11010101
01110110

11010101
01110110

11000101
00010110



QS1: Post-quantum security
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QS2: Quantum security
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For practical applications we care 
about QS1
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