
Post-Quantum Cryptography

Andreas Hülsing

TU Eindhoven & SandboxAQ

Why do cyber criminals focus on
implementation bugs, phishing &
co?

2https://huelsing.net

Because cryptography keeps
them from simply taking over
your communication!

3https://huelsing.net

And if
crypto fails?

4https://huelsing.net

Background:
Cryptography

4/24/2024 https://huelsing.net 5

Secret key encryption (SKE)

01/07/2019 https://huelsing.net 6

plaintext

⚫⬧

⬧

⚫⬧

⚫⬧

⚫

plaintext

Key k Key k

SKE.Enc SKE.Dec

Message authentication (MAC)

01/07/2019 https://huelsing.net 7

plaintext

Key k Key k

MAC.Tag MAC.Vrfyplaintext

How to build secret key crypto?

• Random function sufficient (we need one-wayness)

• Attacks ≈ unstructured search

• How to build random behaving function?

4/24/2024 https://huelsing.net 8

Engineering*

* Disclaimer: Massive simplification

Spoiler:
Killed by quantum? Not that we know.

(but weakened)*

How does Bob
learn shared key k?

4/24/2024 https://huelsing.net 9

Public key encryption (PKE)

01/07/2019 https://huelsing.net 10

plaintext

⚫⬧

⬧

⚫⬧

⚫⬧

⚫

plaintext

Bob’s pk Bob’s sk

PKE.Enc PKE.Dec

Key Exchange (KEX)

01/07/2019 https://huelsing.net 11

Alice’s pkKEX KEXAlice’s sk

Bob’s pk

Bob’s sk

=

Digital Signature (DSig)

01/07/2019 https://huelsing.net 12

plaintext

Alice’s pk

DSig.Sign DSig.Vrfyplaintext

Alice’s sk

Communication security (simplified)

4/24/2024 https://huelsing.net 13

Hi

pk, Cert(pk belongs to shop)

PKC to establish shared secret sk

SKC secured communication using sk

How to build PKC

4/24/2024 https://huelsing.net 14

(Computationally)

hard problem
RSA

DL

QR DDH

PKC Scheme
RSA-
OAEP

ECDSA DH-
KE

The Quantum Threat

15https://huelsing.net

Shor‘s algorithm (1994)

• Quantum computers can do FFT
very efficiently

• Can be used to find period of
a function

• This can be exploited to factor
efficiently (RSA)

• Shor also shows how to solve
discrete log efficiently
(DSA, DH, ECDSA, ECDH)

16https://huelsing.net

How to build PKC

4/24/2024 https://huelsing.net 17

(Computationally)

hard problem
RSA

DL

QR DDH

PKC Scheme
RSA-
OAEP

ECDSA DH-
KE

Communication security (simplified)

4/24/2024 https://huelsing.net 18

Hi

pk, Cert(pk belongs to shop)

PKC to establish shared secret sk

SKC secured communication using sk

Why care today

• EU launched a one billion
Euro project on quantum
technologies

• Similar range is spent in
China

• US administration passed
a bill on spending $1.275
billion US dollar on
quantum computing
research

• Google, IBM, Microsoft,
Alibaba, and others run
their own research
programs.

24.04.2024 https://huelsing.net 19

It‘s a question of risk assessment

24.04.2024 https://huelsing.net 20

Real world cryptography development

Develop systems Analyze security
Implement

systems

Analyze
implementation

security

Select best
systems and
standardize

them

Integrate
systems into
products &
protocols

Role out secure
products

24.04.2024 https://huelsing.net 21

Who would store all encrypted data traffic?
That must be expensive!

24.04.2024 https://huelsing.net 22

Long-lived systems

• Development time easily 10+ years

• Lifetime easily 10+ years

• At least make sure you got a
secure update channel!

24.04.2024 https://huelsing.net 23

Solution to the problem caused by
Shor?
Post-quantum cryptography

4/24/2024 https://huelsing.net 24

How to build PKC

4/24/2024 https://huelsing.net 25

(Computationally)

hard problem
RSA

DL

QR DDH

PKC Scheme
RSA-
OAEP

ECDSA DH-
KE

(computationally)

Quantum-hard
Problem

Quantum-hard problems

4/24/2024 https://huelsing.net 26

...

1

3

14232

2

32

34121

2

11

=

++++=

+++=

y

xxxxxxy

xxxxxxy

Lattice-based: SVP / CVP Hash-based: CR / SPR / ...

Code-based: SD Multivariate: MQ

NIST Competition

4/24/2024 https://huelsing.net 28

“We see our role as managing a process of achieving community consensus in a
transparent and timely manner” NIST’s Dustin Moody 2018

Status of the competition

• Nov 2017: 82 submissions collected

• Dec 2017: 69 “complete & proper” proposals published
• -> Starts round 1 (of 2 or 3 rounds)

• Jan 2019: 26 proposals selected for 2nd round.
• 17 KEM, 9 Signature

• July 2020: 7 Finalists and 8 Alternate candidates selected for
3rd round
• 4+5 KEM, 3+3 DSS

• July 2022 – End of 3rd round – Winners announced

• 2022-2023 – Release draft standards and call for public comments

4/24/2024 https://huelsing.net 29

Selected Algorithms

• KEM:
oCrystals-Kyber (ML-KEM)

• Sig:
oCrystals-Dilithium (ML-DSA)

o Falcon (FN-DSA)

o SPHINCS+ (SLH-DSA)

Dutch (Expads) Success!
• Kyber led by Peter Schwabe (then RU),

with team member Leo Ducas (CWI)
• Dilithium with team members Schwabe (then RU) and Ducas

(CWI)
• SPHINCS+ led by Andreas Hülsing (TU/e)

with team members Daniel J. Bernstein (then
TU/e), Tanja Lange (TU/e), Ruben Niederhagen (then
TU/e), Joost Rijneveld(then RU), Peter Schwabe (then RU), Bas
Westerbaan (Cloudflare)

30https://huelsing.net

02/09/2021 31https://huelsing.net

This is what
we are
actually
interested
in!

02/09/2021

33https://huelsing.net

Challenges
(Along the example of PQWireGuard
[Hülsing, Ning, Schwabe, Weber, Zimmermann. S&P 2021])

02/09/2021 https://huelsing.net 34

Challenges

1. Size

2. Speed

3. Interface mismatch (KEM ≠ NIKE)

4. Security models

5. Standardizing the new protocols

6. Hybrids

02/09/2021 35https://huelsing.net

Challenge 1: Size

• IPv6 Maximum Transmission Unit (MTU) = 1280 bytes
= 1232 bytes + headers.

• Bigger packets risk fragmentation
• complicates state-machine

• can allow DoS

02/09/2021 36https://huelsing.net

Sec Lvl Kyber
PK Ct

Saber
PK Ct

NTRU
PK Ct

McEliece
PK Ct

I 800 768 672 736 699 699 261.120 128

III 1.184 1.088 992 1.088 930 930 524.160 188

V 1.568 1.568 1.312 1.472 1.230 1.230 1.044.992 240

Challenge 1: Size

• IPv6 Maximum Transmission Unit (MTU) = 1280 bytes
= 1232 bytes + headers.

• Bigger packets risk fragmentation
• complicates state-machine

• can allow DoS

02/09/2021 37https://huelsing.net

Sec Lvl Kyber
PK Ct

Saber
PK Ct

NTRU
PK Ct

McEliece
PK Ct

I 800 768 672 736 699 699 261.120 128

III 1.184 1.088 992 1.088 930 930 524.160 188

V 1.568 1.568 1.312 1.472 1.230 1.230 1.044.992 240

PQWireGuard:
Some MACs + pk + ct /
Some MACs + 2 ct

Challenge 1: Size

• IPv6 Maximum Transmission Unit (MTU) = 1280 bytes
= 1232 bytes + headers.

• Bigger packets risk fragmentation
• complicates state-machine

• can allow DoS

02/09/2021 38https://huelsing.net

Sec Lvl Kyber
PK Ct

Saber
PK Ct

NTRU
PK Ct

McEliece
PK Ct

I 800 768 672 736 699 699 261.120 128

III 1.184 1.088 992 1.088 930 930 524.160 188

V 1.568 1.568 1.312 1.472 1.230 1.230 1.044.992 240

PQWireGuard:
Some MACs + pk + ct /
Some MACs + 2 ct

Solution:
McEliece +

passively secure Saber

Challenge 1: Size

• IPv6 Maximum Transmission Unit (MTU) = 1280 bytes
= 1232 bytes + headers.

• Bigger packets risk fragmentation
• complicates state-machine

• can allow DoS

02/09/2021 39https://huelsing.net

Sec Lvl Kyber
PK Ct

Saber
PK Ct

NTRU
PK Ct

McEliece
PK Ct

I 800 768 672 736 699 699 261.120 128

III 1.184 1.088 992 1.088 930 930 524.160 188

V 1.568 1.568 1.312 1.472 1.230 1.230 1.044.992 240

PQWireGuard:
Some MACs + pk + ct /
Some MACs + 2 ct

Solution:
McEliece +

passively secure Saber

Similar situation for
signatures!

Challenge 2: Speed

• Often we have trade-offs speed vs size.

02/09/2021 40https://huelsing.net

Sign/s for SPHINCS+

02/09/2021 41https://huelsing.net

Source: The open Quantum Safe Project, https://openquantumsafe.org/benchmarking/visualization/speed_sig.html

SHA2 SHAKE

128f

128f192f

192f

256f
256f

128s 128s192s 192s256s 256s

Challenge 1+2: Performance

• Performance penalty is noticeable
• Only use PKC where really needed!

• Performance penalty is bigger for signatures
• Only use signatures when needed

02/09/2021 42https://huelsing.net

Challenge 1+2: Performance

• Performance penalty is noticeable
• Only use PKC where really needed!

• Performance penalty is bigger for signatures
• Only use signatures when needed

02/09/2021 43https://huelsing.net

PQWireGuard:
Use KEM for
authentication

Challenge 3: KEM no NIKE (DH)

• Key transport in TLS 1.3: (EC)DH

• Key transport in WireGuard: ECDH

• Key transport in Noise: (EC)DH

• Key transport in Signal, WhatsApp,
…: (EC)DH

02/09/2021 https://huelsing.net 44

Challenge 3: KEM no NIKE (DH)

• Key transport in TLS 1.3: (EC)DH

• Key transport in WireGuard: ECDH

• Key transport in Noise: (EC)DH

• Key transport in Signal, WhatsApp,
…: (EC)DH

02/09/2021 https://huelsing.net 45

NIST will standardize: KEM

Key transport

NIKE

02/09/2021 https://huelsing.net 46

KEM

A(skA,pkA,pkB)

K = f(skA,pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = f(skB,pkA)
M = Dec(K,C)

C

A(skA,pkA,pkB)

K,ct = Encaps(pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = Decaps(skB,ct)
M = Dec(K1,C)

ct,C

Key transport

NIKE

02/09/2021 https://huelsing.net 47

KEM

A(skA,pkA,pkB)

K = f(skA,pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = f(skB,pkA)
M = Dec(K,C)

C

A(skA,pkA,pkB)

K,ct = Encaps(pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = Decaps(skB,ct)
M = Dec(K1,C)

ct,C

Only A could have
computed this K!

Anyone could
have computed

this K!

Key transport

NIKE

02/09/2021 https://huelsing.net 48

KEM

A(skA,pkA,pkB)

K = f(skA,pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = f(skB,pkA)
M = Dec(K,C)

C

A(skA,pkA,pkB)

K,ct = Encaps(pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = Decaps(skB,ct)
M = Dec(K1,C)

ct,C

Only A could have
computed this K!

Anyone could
have computed

this K!

I can even already
mix in ephemeral

keys!

Key transport

NIKE

02/09/2021 https://huelsing.net 49

KEM

A(skA,pkA,pkB)

K = f(skA,pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = f(skB,pkA)
M = Dec(K,C)

C

A(skA,pkA,pkB)

K,ct = Encaps(pkB)
C = Enc(K,M)

B(skB,pkB,pkA)

K = Decaps(skB,ct)
M = Dec(K1,C)

ct,C

Only A could have
computed this K!

Anyone could
have computed

this K!

I can even already
mix in ephemeral

keys!

Can be rescued with
one more message!

WireGuard vs PQWireGuard

02/09/2021 https://huelsing.net 50

WireGuard PQWireGuard

Challenge 4: Security models

• When arguing security,
we have to simplify -> models
• IND-CPA, IND-CCA, EUF-CMA, …

• Sometimes, we can only argue
security when idealizing (some)
building blocks -> idealized models
• Random Oracle Model,

UC-Framework

02/09/2021 51https://huelsing.net

Challenge 4: Security models

• When arguing security,
we have to simplify -> models
• IND-CPA, IND-CCA, EUF-CMA, …

• Sometimes, we can only argue
security when idealizing (some)
building blocks -> idealized models
• Random Oracle Model,

UC-Framework

02/09/2021 52https://huelsing.net

When arguing post-
quantum security, we

have to consider
quantum adversaries!

Challenge 4: Security models

• When arguing security,
we have to simplify -> models
• IND-CPA, IND-CCA, EUF-CMA, …

• Sometimes, we can only argue
security when idealizing (some)
building blocks -> idealized models
• Random Oracle Model,

UC-Framework

02/09/2021 53https://huelsing.net

When arguing post-
quantum security, we

have to consider
quantum adversaries!

Challenging for
idealized models!

Challenge 4: Security models

• When arguing security,
we have to simplify -> models
• IND-CPA, IND-CCA, EUF-CMA, …

• Sometimes, we can only argue
security when idealizing (some)
building blocks -> idealized models
• Random Oracle Model,

UC-Framework

02/09/2021 54https://huelsing.net

When arguing post-
quantum security, we

have to consider
quantum adversaries!

Challenging for
idealized models!

PQWireGuard:
Standard Model
Adoption “easy”

Challenge 5: Standardization

Super important!
(and a lot of work)

But not much different from before.

02/09/2021 https://huelsing.net 55

Challenge 6: Hybrids

Motivation:

• To achieve compliance

• When using non-conservative schemes

Solutions:

• KEM-Combiners / DSS-Combiners

• Exploiting protocol specifics

02/09/2021 56https://huelsing.net

Challenge 6: Hybrids

Motivation:

• To achieve compliance

• When using non-conservative schemes

Solutions:

• KEM-Combiners / DSS-Combiners

• Exploiting protocol specifics

02/09/2021 57https://huelsing.net

PQWireGuard:
Both options work.

Bonus challenge: Complicated proofs &
implementations
Number theoretic schemes have a beautiful simplicity…

… PQC schemes don’t.

• Models get more complicated

• Proofs get more complicated

• Implementations get more complicated

02/09/2021 58https://huelsing.net

Bonus challenge: Complicated proofs &
implementations
Number theoretic schemes have a beautiful simplicity…

… PQC schemes don’t.

• Models get more complicated

• Proofs get more complicated

• Implementations get more complicated

02/09/2021 59https://huelsing.net

How to prevent mistakes?

Bonus challenge: Complicated proofs &
implementations
Number theoretic schemes have a beautiful simplicity…

… PQC schemes don’t.

• Models get more complicated

• Proofs get more complicated

• Implementations get more complicated

02/09/2021 60https://huelsing.net

How to prevent mistakes?

Formal verification!
• Machine checked proofs
• Compiler with guaranteed

security properties
(see e.g., https://formosa-crypto.org/)

https://formosa-crypto.org/

Bonus challenge: Complicated proofs &
implementations
Number theoretic schemes have a beautiful simplicity…

… PQC schemes don’t.

• Models get more complicated

• Proofs get more complicated

• Implementations get more complicated

02/09/2021 61https://huelsing.net

How to prevent mistakes?

Formal verification!
• Machine checked proofs
• Compiler with guaranteed

security properties
(see e.g., https://formosa-crypto.org/)

PQWireGuard:
Machine-checked proof
in symbolic model.

https://formosa-crypto.org/

Conclusions

• We are not done with the end of the NIST
competition

• We manage to handle the challenges well
for “simple” protocols
• We can even get close to previous

performance if we design new protocols with
challenges in mind!

• The challenges will get more problematic
for advanced protocols
• Ratcheting? (Signal, WhatsApp, OTR…)
• Deniable authenticated key exchange? (OTR)
• Tools involving ZKPs, e.g., group signatures,

anonymous credentials?
• …

02/09/2021 https://huelsing.net 62

Resources

4/24/2024 https://huelsing.net 63

• PQC Spring School (2024):
https://pqc-spring-school.nl/

• PQ Summer School (2019):
http://www.pqcschool.org/

• NIST PQC Standardization Project:
https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography

https://pqc-spring-school.nl/
http://www.pqcschool.org/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Thank you!

Questions?

4/24/2024 https://huelsing.net 64

Grover‘s algorithm (1996)

• Quantum computers can search
𝑁 entry DB in Θ(𝑁)

• Application to symmetric crypto

• Nice: Grover is provably optimal
(For random function)

• Double security parameter.

65https://huelsing.net

What about QKD?

4/24/2024 https://huelsing.net 66

Recall:
Communication security (simplified)

4/24/2024 https://huelsing.net 67

Hi

pk, Cert(pk belongs to shop)

PKC to establish shared secret sk

SKC secured communication using sk

The problem solved by QKD

Given

• a shared classical secret,

• a physical channel between parties that supports QKD

• compatible QKD devices on both ends of the channel

It is possible to

• generate a longer shared classical secret.

4/24/2024 https://huelsing.net 68

“Key growing”
(≠ “Key establishment“)

QS0: Classical security

01/07/2019 https://huelsing.net 69

01010101110110

11010101
01110110

11010101
01110110

11000101
00010110

QS1: Post-quantum security

01/07/2019 https://huelsing.net 70

01010101110110

11010101
01110110

11010101
01110110

ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0
ȁ ۧ1 ȁ ۧ1 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ȁ ۧ1 ۧȁ0

QS2: Quantum security

01/07/2019 https://huelsing.net 71

ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ȁ ۧ1 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ȁ ۧ1 ۧȁ0

ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0
ȁ ۧ1 ȁ ۧ1 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ȁ ۧ1 ۧȁ0

ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0
ȁ ۧ1 ȁ ۧ1 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ȁ ۧ1 ۧȁ0

ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ۧȁ0
ȁ ۧ1 ȁ ۧ1 ȁ ۧ1 ۧȁ0 ȁ ۧ1 ȁ ۧ1 ۧȁ0

For practical applications we care
about QS1

01/07/2019 https://huelsing.net 72

	Slide 1: Post-Quantum Cryptography
	Slide 2: Why do cyber criminals focus on implementation bugs, phishing & co?
	Slide 3: Because cryptography keeps them from simply taking over your communication!
	Slide 4: And if crypto fails?
	Slide 5: Background: Cryptography
	Slide 6: Secret key encryption (SKE)
	Slide 7: Message authentication (MAC)
	Slide 8: How to build secret key crypto?
	Slide 9: How does Bob learn shared key k?
	Slide 10: Public key encryption (PKE)
	Slide 11: Key Exchange (KEX)
	Slide 12: Digital Signature (DSig)
	Slide 13: Communication security (simplified)
	Slide 14: How to build PKC
	Slide 15: The Quantum Threat
	Slide 16: Shor‘s algorithm (1994)
	Slide 17: How to build PKC
	Slide 18: Communication security (simplified)
	Slide 19: Why care today
	Slide 20: It‘s a question of risk assessment
	Slide 21: Real world cryptography development
	Slide 22: Who would store all encrypted data traffic? That must be expensive!
	Slide 23: Long-lived systems
	Slide 24: Solution to the problem caused by Shor? Post-quantum cryptography
	Slide 25: How to build PKC
	Slide 26: Quantum-hard problems
	Slide 28: NIST Competition
	Slide 29: Status of the competition
	Slide 30: Selected Algorithms
	Slide 31
	Slide 32: This is what we are actually interested in!
	Slide 33
	Slide 34: Challenges
	Slide 35: Challenges
	Slide 36: Challenge 1: Size
	Slide 37: Challenge 1: Size
	Slide 38: Challenge 1: Size
	Slide 39: Challenge 1: Size
	Slide 40: Challenge 2: Speed
	Slide 41: Sign/s for SPHINCS+
	Slide 42: Challenge 1+2: Performance
	Slide 43: Challenge 1+2: Performance
	Slide 44: Challenge 3: KEM no NIKE (DH)
	Slide 45: Challenge 3: KEM no NIKE (DH)
	Slide 46: Key transport
	Slide 47: Key transport
	Slide 48: Key transport
	Slide 49: Key transport
	Slide 50: WireGuard vs PQWireGuard
	Slide 51: Challenge 4: Security models
	Slide 52: Challenge 4: Security models
	Slide 53: Challenge 4: Security models
	Slide 54: Challenge 4: Security models
	Slide 55: Challenge 5: Standardization
	Slide 56: Challenge 6: Hybrids
	Slide 57: Challenge 6: Hybrids
	Slide 58: Bonus challenge: Complicated proofs & implementations
	Slide 59: Bonus challenge: Complicated proofs & implementations
	Slide 60: Bonus challenge: Complicated proofs & implementations
	Slide 61: Bonus challenge: Complicated proofs & implementations
	Slide 62: Conclusions
	Slide 63: Resources
	Slide 64
	Slide 65: Grover‘s algorithm (1996)
	Slide 66: What about QKD?
	Slide 67: Recall: Communication security (simplified)
	Slide 68: The problem solved by QKD
	Slide 69: QS0: Classical security
	Slide 70: QS1: Post-quantum security
	Slide 71: QS2: Quantum security
	Slide 72: For practical applications we care about QS1

